Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30'. Ngọn núi đó có độ cao so với mặt đất là bao nhiêu (làm tròn đến hàng phần trăm)?
Gọi CH là chiều cao của ngọn núi.
Theo đề ta có: \(AB = 70\,\,m,\,\widehat {CAH} = 30^\circ ,\,\widehat {ABC} = 90^\circ + 15^\circ 30' = 105,5^\circ \).
Suy ra \(\widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \);
\(\widehat {ACB} = 180^\circ - \widehat {ABC} - \widehat {BAC} = 180^\circ - 105,5^\circ - 60^\circ = 14,5^\circ \).
Theo định lý sin trong tam giác ABC, ta có: \(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {ABC}}} \Leftrightarrow AC = \frac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {BCA}}} = \frac{{70.\sin 105,5^\circ }}{{\sin 14,5^\circ }} \approx 269,41\,m\).
∆ACH vuông tại H nên ta có:
\(CH = {\rm{A}}C.\,\sin \widehat {CAH} = 269,41.\sin 30^\circ \approx 134,71\,m\).
Vậy ngọn núi đó có độ cao so với mặt đất xấp xỉ bằng 134,71 m.
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20 |
41 |
41 |
80 |
40 |
52 |
52 |
52 |
60 |
55 |
60 |
60 |
62 |
60 |
55 |
60 |
55 |
90 |
70 |
35 |
40 |
30 |
30 |
80 |
25 |
|
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ \(\overrightarrow {OB} \) cùng phương với vectơ nào sau đây?
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Cho tam giác đều ABC cạnh 4. Vectơ \( - \frac{1}{2}\overrightarrow {BC} \) có độ dài là.
Cho mẫu số liệu sau:
5; 6; 12; 2; 5; 17; 23; 15; 10.
Tính khoảng tứ phân vị của mẫu số liệu trên.
Cho tam giác ABC cân tại A có \[\widehat A = 120^\circ \]. Khi đó sin B bằng:
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?