Cho hàm số \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[(k \in \mathbb{R})\]. Để \[f'\left( 1 \right) = \frac{3}{2}\] thì ta chọn:
Hướng dẫn giải:
Chọn C.
Ta có: \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[ \Rightarrow f'\left( x \right) = {\left( {k\sqrt[3]{x} + \sqrt x } \right)^\prime } = k{\left( {\sqrt[3]{x}} \right)^\prime } + {\left( {\sqrt x } \right)^\prime }\]
Đặt \(y = \sqrt[3]{x} \Rightarrow {y^3} = x \Rightarrow 3{y^2}y' = 1 \Rightarrow y' = \frac{1}{{3{y^2}}} = \frac{1}{{3{{\left( {\sqrt[3]{x}} \right)}^2}}}\).
\[f'\left( x \right) = k{\left( {\sqrt[3]{x}} \right)^\prime } + {\left( {\sqrt x } \right)^\prime }\]\[ = \frac{k}{{3{{\left( {\sqrt[3]{x}} \right)}^2}}} + \frac{1}{{2\sqrt x }}\].Vậy để \[f'\left( 1 \right) = \frac{3}{2}\] thì \[\frac{k}{3} + \frac{1}{2} = \frac{3}{2} \Rightarrow k = 3\].
Cho hàm số \(y = 4x - \sqrt x \). Nghiệm của phương trình \(y' = 0\) là
Cho hàm số \(y = {x^3} - 3{x^2} - 9x - 5\). Phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = - 4{x^3} + 4x\). Để \(y' \ge 0\) thì \[x\]nhận các giá trị thuộc tập nào sau đây ?
Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây