Cho hàm số \(y = - 4{x^3} + 4x\). Để \(y' \ge 0\) thì \[x\]nhận các giá trị thuộc tập nào sau đây ?
Hướng dẫn giải:
Chọn B
Ta có \(y = - 4{x^3} + 4x\)\( \Rightarrow y' = - 12{x^2} + 4\).
Nên \(y' \ge 0 \Leftrightarrow - 12{x^2} + 4 \ge 0 \Leftrightarrow x \in \left[ { - \frac{1}{{\sqrt 3 }};\frac{1}{{\sqrt 3 }}} \right].\)
Cho hàm số \(y = 4x - \sqrt x \). Nghiệm của phương trình \(y' = 0\) là
Cho hàm số \(y = {x^3} - 3{x^2} - 9x - 5\). Phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[(k \in \mathbb{R})\]. Để \[f'\left( 1 \right) = \frac{3}{2}\] thì ta chọn:
Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây