Hướng dẫn giải:
Đáp án A
\(\begin{array}{l}f'(x) = {\left( {\frac{{1 - 3x + {x^2}}}{{x - 1}}} \right)^\prime }\\\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\left( {1 - 3x + {x^2}} \right)}^\prime }\left( {x - 1} \right) - \left( {1 - 3x + {x^2}} \right){{\left( {x - 1} \right)}^\prime }}}{{{{\left( {x - 1} \right)}^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\left( { - 3 + 2x} \right)\left( {x - 1} \right) - \left( {1 - 3x + {x^2}} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} \right)}^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\left( {x - 1} \right)}^2} + 1}}{{{{\left( {x - 1} \right)}^2}}} > 0,\,\forall x \ne 1\end{array}\)
Cho hàm số \(y = 4x - \sqrt x \). Nghiệm của phương trình \(y' = 0\) là
Cho hàm số \(y = {x^3} - 3{x^2} - 9x - 5\). Phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = - 4{x^3} + 4x\). Để \(y' \ge 0\) thì \[x\]nhận các giá trị thuộc tập nào sau đây ?
Cho hàm số \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[(k \in \mathbb{R})\]. Để \[f'\left( 1 \right) = \frac{3}{2}\] thì ta chọn:
Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây