Hướng dẫn giải
Đáp án đúng là: A
Đường tròn có phương trình x2 + y2 – 2x – 4y + 4 = 0 có tâm I(1; 2).
Điểm M nằm trên trục tung nên M(0; y0).
Thay x = 0 vào phương trình đường tròn ta được:
02 + y02 – 2 . 0 – 4y0 + 4 = 0 Û y02 – 4y0 + 4 = 0.
Û (y0 – 2)2 = 0 Û y0 – 2 = 0 Û y0 = 2.
Khi đó M(0; 2).
Phương trình tiếp tuyến của đường tròn tâm I(1; 2) tại điểm M(0; 2) là:
(1 – 0)(x – 0) + (2 – 2)(y – 2) = 0
Û x = 0.
Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.
a) Viết phương trình đường thẳng (∆) song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).
b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).