Đáp án D
Phương pháp
Sử dụng khai triển nhị thức Niu-ton: \[{\left( {a - b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]
Từ đó tìm hệ số của \[{x^3}\] trong khai triển.
Cách giải:
Ta có: \[{\left( {1 - 2x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( { - 2x} \right)}^k}} = \sum\limits_{k = 0}^8 {C_8^k{{\left( { - 2} \right)}^k}} {x^k}\].
Số hạng chứa \[{x^3}\] ứng với \[k = 3\].
Suy ra hệ số cần tìm là: \[C_8^3.{\left( { - 2} \right)^3} = - 448\].
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?