Đáp án A
Phương pháp
Sử dụng hai quy tắc đếm cơ bản.
Cách giải
Gọi số cần tìm là \[\overline {abcd} \].
TH1: \[d = 0\] thì:
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
Suy ra có \[1.5.4.3 = 60\] số chẵn có chữ số tận cùng là 0.
TH2: \[d \in \left\{ {2;4} \right\}\] thì d có 2 cách chọn.
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
Suy ra có \[2.4.4.3 = 96\] số.
Vậy lập được tất cả \[96 + 60 = 156\] số thỏa mãn đề bài.
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?