IMG-LOGO

Câu hỏi:

18/07/2024 56

Tổng \(C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009}\) bằng:

A. \({2^{2018}}\).

B. \({2^{2018}} + 1\).

C. \({2^{2018}} - 1\).

Đáp án chính xác

D. \({2^{2019}}\).

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Áp dụng \(C_n^0 + C_n^1 + ... + C_n^n = {2^n}\).

Cách giải:

Ta có: \(C_{2019}^0 + C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2019} = {2^{2019}}\)

\(C_{2019}^0 = C_{2019}^{2019} = 1,\,\,C_{2019}^1 = C_{2019}^{2018},\,C_{2019}^2 = C_{2019}^{2017},...,C_{2019}^{1009} = C_{2019}^{1010}\)

\( \Leftrightarrow 1 + C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009} + C_{2019}^{1010} + ... + C_{2019}^1 + 1 = {2^{2019}}\)

\( \Leftrightarrow 2 + 2\left( {C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009}} \right) = {2^{2019}}\)

\( \Leftrightarrow C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009} = {2^{2018}} - 1\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là đường thẳng nào:

Xem đáp án » 25/06/2023 125

Câu 2:

Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\)\(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.

a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).

b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.

c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?

Media VietJack

Xem đáp án » 25/06/2023 82

Câu 3:

Tìm các giá trị của tham số m để phương trình \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m\) có nghiệm \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right]\).

Xem đáp án » 25/06/2023 79

Câu 4:

Cho hình chóp S.ABCD. Gọi M, N lần lượt là trọng tâm tam giác SAB, SAD. Gọi P là trung điểm của BC. Mệnh đề nào sau đây đúng?

Xem đáp án » 25/06/2023 76

Câu 5:

Một lớp học có 30 học sinh được xếp thành một hàng dọc. Tính xác suất  để hai bạn An và Hà đứng cạnh nhau?

Xem đáp án » 25/06/2023 74

Câu 6:

Trong hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Hỏi phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số \(k = \frac{1}{2}\) và phép quay tâm O góc quay \(180^\circ \) sẽ biến đường tròn (C) thành đường tròn nào trong các đường tròn có phương trình sau:

Xem đáp án » 25/06/2023 72

Câu 7:

Cho tứ diện ABCD đều cạnh a. Gọi G là trọng tâm tam giác ABC, mặt phẳng (CGD) cắt tứ diện theo một thiết diện có diện tích là:

Xem đáp án » 25/06/2023 71

Câu 8:

Tập giá trị của hàm số \(y = \frac{{2\sin 2{\rm{x}} + \cos 2x}}{{\sin 2x - \cos 2x + 3}}\) có tất cả bao nhiêu giá trị nguyên?

Xem đáp án » 25/06/2023 70

Câu 9:

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện cắt bởi mp(MNP) là hình gì trong các hình sau?

Xem đáp án » 25/06/2023 68

Câu 10:

Hệ số của \({x^5}\) trong khai triển của biểu thức \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) bằng

Xem đáp án » 25/06/2023 66

Câu 11:

Từ một hộp chứa 16 thẻ được đánh số từ 1 đến 16, chọn ngẫu nhiên 4 thẻ. Tính xác suất để 4 thẻ được chọn đều là số chẵn.

Xem đáp án » 25/06/2023 65

Câu 12:

a) Gọi a, b, c lần lượt là hệ số của các số hạng chứa \[{x^2}\], số hạng chứa \[{x^4}\], số hạng chứa \[{x^6}\] trong khai triển biểu thức \[{\left( {\frac{x}{2} - 4m} \right)^{12}}\] thành đa thức. Tìm m để \[a = bc\].

Xem đáp án » 25/06/2023 63

Câu 13:

Giải các phương trình sau:

a) \(\frac{3}{{{{\sin }^2}x}} - 2\sqrt 3 \cot x - 6 = 0\)

Xem đáp án » 25/06/2023 62

Câu 14:

b) \(\frac{{\cos \left( {\frac{{7\pi }}{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x}}{{1 - 2\sin x}} = 0\)

Xem đáp án » 25/06/2023 62

Câu 15:

Có hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,6. Xác suất để có ít nhất một người bắn trúng là:

Xem đáp án » 25/06/2023 60

Câu hỏi mới nhất

Xem thêm »
Xem thêm »