Phương pháp:
Áp dụng: \[C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = {2^n}\] và BĐT Cô si
Cách giải:
Ta có: \[C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = {2^n} \Leftrightarrow C_n^1 + C_n^2 + ... + C_n^{n - 1} = {2^n} - 2\]
Áp dụng BĐT Cô si cho \[n - 1\] số dương \[C_n^1,\,C_n^2,\,...,\,C_n^{n - 1}\] ta có:
\[C_n^1 + C_n^2 + ... + C_n^{n - 1} \ge \left( {n - 1} \right)\sqrt[{n - 1}]{{C_n^1C_n^2\,...C_n^{n - 1}}},\,\forall n \in \mathbb{N},\,n \ge 2\]
\[ \Rightarrow {2^n} - 2 \ge \left( {n - 1} \right)\sqrt[{n - 1}]{{C_n^1C_n^2\,...C_n^{n - 1}}} \Leftrightarrow C_n^1C_n^2\,...C_n^{n - 1} \le {\left( {\frac{{{2^n} - 2}}{{n - 1}}} \right)^{n - 1}} \Leftrightarrow C_n^0C_n^1C_n^2\,...C_n^{n - 1}C_n^n \le {\left( {\frac{{{2^n} - 2}}{{n - 1}}} \right)^{n - 1}}\]
(do \[C_n^0 = C_n^n = 1\])
Vậy, \[C_n^0C_n^1C_n^2\,...C_n^n \le {\left( {\frac{{{2^n} - 2}}{{n - 1}}} \right)^{n - 1}},\,\forall n \in \mathbb{N},\,n \ge 2\].
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\) và \(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.
a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).
b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.
c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?
Giải các phương trình sau:
a) \(\frac{3}{{{{\sin }^2}x}} - 2\sqrt 3 \cot x - 6 = 0\)