Đáp án D
Phương pháp:
Sử dụng định nghĩa phép quay: \[{Q_{\left( {I;\alpha } \right)}}\left( A \right) = A' \Leftrightarrow \left\{ \begin{array}{l}\angle \left( {IA;IA'} \right) = \alpha \\IA = IA'\end{array} \right..\]
Cách giải:
\[{Q_{\left( {A;90^\circ } \right)}}\left( d \right) = d' \Leftrightarrow d \bot d'.\]
Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD và \[AB = 2CD,\] O là giao điểm của AC và BD. Gọi M, N là trung điểm của SB và SD.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right).\]
b) Xác định giao điểm của SC và \[\left( {AMN} \right).\]
c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]
Giải các phương trình sau:
a) \[\cos x = \frac{{\sqrt 3 }}{2}\] b) \[\cos 2x + \sin x + 2 = 0\]