Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2) có bảng biến thiên như bên dưới.
Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình có 5 phần tử bằngA. 0
B. -3
C. -1
D. 2
Chọn C
Từ gt tìm được có BBT
Phương trình , Đk
TH1:
TH2:
Yêu cầu bài toán
TH3:
Yêu cầu bài toán ó <=> (2) có đúng 3 nghiệm phân biệt
Nếu không có số nguyên nào thỏa mãn
Nếu (3), (4), (5), mỗi pt 1 nghiệm và nghiệm > 3( không thỏa mãn)
Nên có các giá trị m nguyên là
+) có 1 nghiệm > 3( không tm)
(4) <=> f(x) = -3 -> 1 nghiệm > 3 (KTM)
có 3 nghiệm pb trong đó có 1 nghiệm > 2 (KTM)
+) m = -3
+) m = -2
+) m = -1
Vậy m = 2 hoặc m = -3, nên tổng các giá trị của m bằng -1, chọn đáp án C.
Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên dưới.
Số nghiệm thực của phương trình f(x) = 1 làCó bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;100] để bất phương trình nghiệm đúng với ?
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.
Số nghiệm thực phân biệt của phương trình là
Cho hàm số y = f(x) xác định trên R và có bảng xét dấu đạo hàm như sau:
Khi đó hàm số y = f(x) đồng biến trên khoảng