Lời giải
Điều kiện: x, y ³ 0. Trừ hai phương trình của hệ cho nhau ta thu được:
\(\left( {{x^2} + \sqrt x } \right) - \left( {{y^2} + \sqrt y } \right) = 2y - 2x\)
\( \Leftrightarrow \left( {\sqrt x - \sqrt y } \right)\left[ {\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right)} \right] = 0\)
Vì \(\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right) > 0\) nên phương trình đã cho tương đương với: x = y.
Thay x = y vào phương trình \({x^2} + \sqrt x = 2y\) ta được \({x^2} + \sqrt x = 2x\)
\( \Leftrightarrow {x^2} - 2x + \sqrt x = 0\).
Xem phương trình trên là phương trình bậc 5 ẩn là \(\sqrt x \) suy ra
\[\left[ \begin{array}{l}\sqrt x = 0 \Rightarrow x = y = 0\\\sqrt x = 1 \Rightarrow x = y = 1\\\sqrt x = \frac{{\sqrt 5 - 1}}{2} \Rightarrow x = y = \frac{{3 - \sqrt 5 }}{2}\\\sqrt x = \frac{{ - \sqrt 5 - 1}}{2}\;\;\;\left( L \right)\end{array} \right.\]
Vậy hệ có 3 cặp nghiệm: \(\left( {x;\;y} \right) \in \left\{ {\left( {0;\;0} \right),\;\left( {1;\;1} \right),\;\left( {\frac{{3 - \sqrt 5 }}{2};\;\frac{{3 - \sqrt 5 }}{2}} \right)} \right\}\).
Suy ra có hai cặp nghiệm thỏa mãn đề bài.
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].