Lời giải
A = (3x + 5)(2x − 1) − (1 − 4x)(3x + 2)
= 6x2 + 10x − 3x − 5 + 12x2 − 3x + 8x − 2
= 18x2 + 12x – 7.
Ta có: |x| = 2 Û x = ± 2.
• Với x = 2 suy ra B = 18 . 22 + 12 .2 − 7 = 89.
• Với x = −2 suy ra B = 18 . (−2)2 + 12 . (−2) − 7 = 41.
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].