Lời giải
\(x = \sqrt[3]{{2 - \sqrt 3 }} + \sqrt[3]{{2 + \sqrt 3 }}\)
\( \Leftrightarrow {x^3} = 2 - \sqrt 3 + 2 + \sqrt 3 + 3\sqrt[3]{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}\left( {\sqrt[3]{{2 - \sqrt 3 }} + \sqrt[3]{{2 + \sqrt 3 }}} \right)\)
\( \Leftrightarrow {x^3} = 4 + 3\sqrt[3]{1}x\)
Û x3 − 3x − 4 = 0
Với phương trình bậc 3 nghiệm xấu ta có thể sử dụng phương pháp Cardano.
Đặt \(x = a + \frac{1}{a}\;\left( {a \ne 0} \right)\)
Khi đó: x3 − 3x − 4 = 0
\( \Leftrightarrow {\left( {a + \frac{1}{a}} \right)^3} - 3\left( {a + \frac{1}{a}} \right) - 4 = 0\)
\( \Leftrightarrow {a^3} + \frac{1}{{{a^3}}} - 4 = 0\)
Û a6 − 4a3 + 1 = 0
Û (a3 − 2)2 = 3
\( \Rightarrow {a^3} = 2 \pm \sqrt 3 \Rightarrow a = \sqrt[3]{{2 \pm \sqrt 3 }}\)
\[ \Rightarrow x = \sqrt[3]{{2 \pm \sqrt 3 }} + \frac{1}{{\sqrt[3]{{2 \pm \sqrt 3 }}}} = \sqrt[3]{{2 + \sqrt 3 }} + \frac{1}{{\sqrt[3]{{2 + \sqrt 3 }}}}\].
Vậy \[x = \sqrt[3]{{2 + \sqrt 3 }} + \frac{1}{{\sqrt[3]{{2 + \sqrt 3 }}}}\].
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].