Lời giải
2x2 + y2 − 6x + 2xy − 2y + 5 = 0
Û (x2 + 2xy + y2) + (x2 − 4x + 4) − (2x + 2y) + 1 = 0
Û (x + y)2 + (x − 2)2 − 2(x + y) + 1 = 0
Û (x + y)2 − 2(x + y) + 1 + (x − 2)2 = 0
Û (x + y − 1)2 + (x − 2)2 = 0
\( \Rightarrow \left\{ \begin{array}{l}x + y - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1 - x\\x = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - 1\\x = 2\end{array} \right.\).
Vậy (x; y) = (2; −1) là nghiệm của phương trình.
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].