Lời giải
ĐK: x ³ 2
\(\frac{{C_{n + 1}^2}}{{C_n^2}} \ge \frac{3}{{10}}n\)
\( \Leftrightarrow \frac{{\frac{{\left( {n + 1} \right)!}}{{2!\left( {n - 1} \right)!}}}}{{\frac{{n!}}{{2!\left( {n - 2} \right)!}}}} \ge \frac{3}{{10}}n\)
\( \Leftrightarrow \frac{{n + 1}}{{n - 1}} \ge \frac{3}{{10}}n\)
Û 10n + 10 ³ 3n2 − 3n
Û 3n2 − 13n − 10 £ 0
\( \Leftrightarrow \frac{{ - 2}}{3} \le n \le 5\).
Kết hợp ĐK suy ra n Î {2; 3; 4; 5}.
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].