Lời giải
\[A = {x^2} - {\rm{ }}xy + 2{y^2} = \frac{{{x^2} - {\rm{ }}xy + 2{y^2}}}{1} = \frac{{{x^2} - {\rm{ }}xy + 2{y^2}}}{{{x^2} + xy + {y^2}}}\]
• Với y = 0 Þ A = 1.
• Với y ¹ 0, chia cả tử và mẫu của vế phải cho y2
\( \Rightarrow A = \frac{{{{\left( {\frac{x}{y}} \right)}^2} - \frac{x}{y} + 2}}{{{{\left( {\frac{x}{y}} \right)}^2} + \frac{x}{y} + 1}}\).
Đặt \(\frac{x}{y} = a \Rightarrow A = \frac{{{a^2} - a + 2}}{{{a^2} + a + 1}}\)
Û A.a2 + A.a + A = a2 − a + 2
Û (A − 1).a2 + (A + 1).a + A − 2 = 0
D = (A + 1)2 − 4(A − 1)(A − 2) ³ 0
Û −3A2 + 14A − 7 ³ 0
\( \Rightarrow \frac{{7 - 2\sqrt 7 }}{3} \le A \le \frac{{7 + 2\sqrt 7 }}{3}\).
Vậy \(\left\{ \begin{array}{l}{A_{\min }} = \frac{{7 - 2\sqrt 7 }}{3}\\{A_{\max }} = \frac{{7 + 2\sqrt 7 }}{3}\end{array} \right.\).
Cho các khẳng định:
(I): Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.
(II): Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.
(III): Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
Số khẳng định sai trong các khẳng định trên là:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).
Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh DABD = DACD.
b) Chứng minh rằng AM = 2.BD.
c) Tính số đo \[\widehat {MAD}\].