Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình d1: 3x – 4y + 15 = 0, d2: 5x + 2y – 1 = 0 và d3: mx – (2m – 1)y + 9m – 13 = 0. Tất cả các giá trị của tham số m để ba đường thẳng đã cho cùng đi qua một điểm là
A.
B.
C.
Hướng dẫn giải:
Đáp án đúng là: D
Tọa độ giao điểm của d1 và d2 là nghiệm của hệ phương trình:
Để ba đường thẳng d1, d2 và d3 đồng quy thì A(–1; 3) ∈ d3
⇔ m.(–1) – (2m – 1).3 + 9m – 13 = 0
⇔ –m – 6m + 3 + 9m – 13 = 0
⇔ 2m = 10
⇔ m = 5.
Trong mặt phẳng tọa độ Oxy, tọa độ giao điểm của hai đường thẳng d1: và d2: là
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x + y – 3 = 0 và d2: 2x + y – 3 = 0. Khẳng định nào sau đây đúng?
Trong mặt phẳng tọa độ Oxy, tọa độ giao điểm của hai đường thẳng d1: 7x – 3y + 16 = 0 và d2: x + 10 = 0 là
Trong mặt phẳng tọa độ Oxy, đường thẳng d: x – 2y – 1 = 0 song song với đường thẳng có phương trình nào sau đây?
Trong mặt phẳng tọa độ Oxy, với giá trị nào của m thì hai đường thẳng và trùng nhau?
Trong mặt phẳng tọa độ Oxy, với giá trị nào của m thì hai đường thẳng d1: và d2: mx + 2y – 14 = 0 song song?
Giá trị a để hai đường thẳng d1: ax + 3y – 4 = 0 và cắt nhau tại một điểm nằm trên trục hoành là
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng và Khẳng định nào sau đây đúng?
Trong mặt phẳng tọa độ Oxy, với giá trị nào của m thì hai đường thẳng d1: (m – 3)x + 2y + m2 – 1 = 0 và d2: –x + my + m2 – 2m + 1 = 0 cắt nhau?