Cho phương trình \({\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt {\sqrt 5 - 2} }}\sqrt {{x^2} + mx - 2{m^2}} = 0\). Có bao nhiêu giá trị nguyên của tham số \(m\) đế phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thoả mãn \(x_1^2 + x_2^2 = 3?\)
\({\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt {\sqrt 5 - 2} }}\sqrt {{x^2} + mx - 2{m^2}} = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt 5 - 2}}\left( {{x^2} + mx - 2{m^2}} \right) = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\frac{{5 - 4}}{{\sqrt 5 + 2}}}}\left( {{x^2} + mx - 2{m^2}} \right) = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) - {\log _{\sqrt 5 + 2}}\left( {{x^2} + mx - 2{m^2}} \right) = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {\frac{{2{x^2} - x - 4{m^2} + 2m}}{{{x^2} + mx - 2{m^2}}}} \right) = 0\)\( \Leftrightarrow \frac{{2{x^2} - x - 4{m^2} + 2m}}{{{x^2} + mx - 2{m^2}}} = 1\)
\( \Leftrightarrow {x^2} - (1 + m)x - 2{m^2} + 2m = 0\)
Yêu cầu bài toán \( \Leftrightarrow \left\{ \begin{array}{l}{(1 + m)^2} + 2{m^2} - 2m > 0\\{x_1}^2 + {x_2}^2 = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3{m^2} + 1 > 0\\{\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3\end{array} \right.\)
\( \Rightarrow {\left( {1 + m} \right)^2} - 2\left( {2m - 2{m^2}} \right) = 3 \Leftrightarrow {m^2} + 2m + 1 - 4m + 4{m^2} = 3 \Leftrightarrow 5{m^2} - 2m - 2 = 0\)
\( \Leftrightarrow m = \frac{{1 \pm \sqrt {11} }}{5}\).
Suy ra không có giá trị nguyên nào của \(m\) thỏa mãn yêu cầu bài toán. Đáp án: 0.
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 8x + m}}\) có 3 đường tiệm cận?
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với đáy và \(SA = a\sqrt 3 .\) Gọi \(\alpha \) là góc giữa \[SD\] và \(\left( {SAC} \right).\) Giá trị \(\sin \alpha \) bằng
Thực hiện phản ứng điều chế isoamyl acetate (dầu chuối) theo trình tự sau:
- Bước 1: Cho \(2{\rm{ml}}\) isoamyl alcohol, \(2{\rm{ml}}\) acetic acid nguyên chất và 2 giọt sulfuric acid đặc vào ống nghiệm khô.
- Bước 2: Lắc đều, đun cách thủy hỗn hợp 8-10 phút trong nồi nước sôi.
- Bước 3: Làm lạnh, sau đó rót \(2{\rm{ml}}\) dung dịch \({\rm{NaCl}}\) bão hòa vào ống nghiệm.
Phát biểu nào sau đây sai?
Đọc đoạn trích sau và trả lời câu hỏi:
Để Đất Nước này là Đất Nước Nhân dân
Đất Nước của Nhân dân, Đất Nước của ca dao thần thoại
(Đất Nước – Nguyễn Khoa Điềm)
Hai từ “Đất Nước”, “Nhân dân” được tác giả viết hoa với dụng ý gì?
Đọc đoạn trích sau và trả lời câu hỏi:
Tiếng ai tha thiết bên cồn
Bâng khuâng trong dạ, bồn chồn bước đi
Áo chàm đưa buổi phân ly
Cầm tay nhau biết nói gì hôm nay...
(Việt Bắc – Tố Hữu)
Hình ảnh “áo chàm” trong câu thơ “Áo chàm đưa buổi phân ly” được dùng để gọi tên cho ai?
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)