Thí nghiệm xác định định tính nguyên tố carbon và hydrogen trong phân tử saccharose được tiến hành theo các bước sau:
Bước 1: Trộn đều khoảng 0,2 gam saccharose với 1 đến 2 gam copper(II) oxide, sau đó cho hỗn hợp vào ống nghiệm khô (ống số 1) rồi thêm tiếp khoảng 1 gam copper(II) oxide để phủ kín hỗn hợp. Nhồi một nhúm bông có rắc bột \[CuS{O_4}\] khan vào phần trên ống số 1 rồi nút bằng nút cao su có ống dẫn khí.
Bước 2: Lắp ống số 1 lên giá thí nghiệm rồi nhúng ống dẫn khí vào dung dịch \[Ca{(OH)_2}\]đựng trong ống nghiệm (ống số 2).
Bước 3: Dùng đèn cồn đun nóng ống số 1 (lúc đầu đun nhẹ, sau đó đun tập trung vào phần có hỗn hợp phản ứng).
Cho các phát biểu sau:
(a) \[CuS{O_4}\]khan được dùng để nhận biết \[{H_2}O\]sinh ra trong thí nghiệm.
(b) Thí nghiệm trên, trong ống số 2 có xuất hiện kết tủa trắng.
(c) Ở bước 2, lắp ống số 1 sao cho miệng ống hướng lên.
(d) Thí nghiệm trên còn được dùng để xác định định tính nguyên tố oxygen trong phân tử saccharose.
(e) Kết thúc thí nghiệm: tắt đèn cồn, để ống số 1 nguội hẳn rồi mới đưa ống dẫn khí ra khỏi dung dịch trong ống số 2.
Số phát biểu đúng là
(a) đúng, nguyên tố H trong saccharose chuyển hoá thành \[{H_2}O\] nên màu trắng của \[CuS{O_4}\] khan chuyển thành màu xanh của \[CuS{O_4}.5{H_2}O.\]
(b) đúng, PTHH: \[C{O_2} + {\rm{ }}Ca{\left( {OH} \right)_2} \to {\rm{ }}CaC{O_3} \downarrow {\rm{ }} + {\rm{ }}{H_2}O.\]
(c) sai, đặt miệng ống nghiệm hơi chúc xuống trên giá ống nghiệm để hơi nước và \[C{O_2}\] thoát ra ống dẫn khí.
(d) sai, thí nghiệm chỉ xác định định tính được C và H.
(e) sai, tháo ống dẫn khí trước khi tắt đèn cồn để tránh dung dịch trong ống 2 bị hút vào ống dẫn khí do áp suất trong ống 1 giảm.
Vậy có 2 phát biểu đúng.
Chọn A.
Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?
Từ 180 gam glucose, bằng phương pháp lên men rượu, thu được a gam ethyl alcohol (hiệu suất 80%). Oxi hoá 0,l a gam ethyl alcohol bằng phương pháp lên men giấm, thu được hỗn hợp X. Để trung hoà hỗn hợp X cần dùng 720 ml dung dịch NaOH 0,2M. Hiệu suất quá trình lên men giấm là:
Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Trong không gian \[Oxyz,\] cho hai vectơ \(\vec a = \left( {2\,;\,\,m - 1\,;\,\,3} \right)\) và \(\vec b = \left( {1\,;\,\,3\,;\,\, - 2n} \right).\) Giá trị của \[m,\,\,n\] để hai vectơ \(\vec a,\,\,\vec b\) cùng hướng với nhau là
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Cho hình trụ có bán kính đáy bằng 3. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng qua trục, thiết diện thu được là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng
Một khách hàng gửi ngân hàng 20 triệu đồng, kỳ hạn 3 tháng, với lãi suất \[0,65\% \] một tháng theo phương thức lãi kép. Hỏi sau bao nhiêu lâu vị khách này mới có số tiền lãi nhiều hơn số tiền gốc ban đầu gửi ngân hàng? Giả sử người đó không rút lãi ở tất cả các định kỳ.
Cho hàm số \(f\left( x \right) = a{x^4} + 2\left( {a + 4} \right){x^2} - 1\) với \(a\) là tham số thực. Nếu \[{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = f\left( 1 \right)\] thì \({\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right)\) bằng
Người ta thiết kế một chiếc thùng hình trụ có thể tích \[V\] cho trước. Biết rằng chi phí làm mặt đáy và nắp của thùng bằng nhau và gấp 3 lần chi phí làm mặt xung quanh của thùng (chi phí cho một đơn vị diện tích). Gọi \[h,\,\,R\] lần lượt là chiều cao và bán kính đáy của thùng. Tỉ số \(\frac{h}{R}\) bằng bao nhiêu để chi phí sản xuất chiếc thùng là thấp nhất?
Để xác định nồng độ dung dịch \[{H_2}{O_2},\]người ta hoà tan 0,5 gam nước oxy già vào nước, thêm \({H_2}S{O_4}\) tạo môi trường acid. Chuẩn độ dung dịch thu được cần vừa đủ 10 ml dung dịch \(KMn{O_4}\) 0,1M thu được các sản phẩm: \[{K_2}S{O_4},{\rm{ }}MnS{O_4},{\rm{ }}{O_2},{\rm{ }}{H_2}O.\] Hàm lượng \[{H_2}{O_2}\]trong nước oxy già là:
Trong không gian \[Oxyz,\] cho điểm \(M\left( {3\,;\,\,2\,;\,\,1} \right).\) Mặt phẳng \((P)\) đi qua \(M\) và cắt các trục tọa độ \[Ox,\,\,Oy,\,\,Oz\] lần lượt tại các điểm \[A,\,\,B,\,\,C\] không trùng với gốc tọa độ sao cho \(M\) là trực tâm tam giác \[ABC.\] Mặt phẳng nào dưới đây song song với \((P)\)?
Cho dãy số \[\left( {{u_n}} \right):\left\{ {\begin{array}{*{20}{l}}{{u_1} = - 1}\\{{u_{n + 1}} = {u_n} + 3}\end{array}\,\,\left( {\forall n \in \mathbb{N},\,\,n \ge 1} \right)} \right..\] Tính \(\lim \frac{{{u_n}}}{{5n + 2020}}.\)