Cho hàm số \(y = f\left( x \right)\), có bảng xét dấu của \(f'\left( x \right)\) như sau:
\(x\) |
\( - \infty \) |
|
1 |
|
2 |
|
3 |
|
4 |
|
\( + \infty \) |
\(f'\left( x \right)\) |
|
\( - \) |
0 |
+ |
0 |
+ |
0 |
\( - \) |
0 |
+ |
|
Biết \(f\left( 2 \right) + f\left( 6 \right) = 2f\left( 3 \right).\) Hỏi phương trình \(f\left( {{x^2} + 1} \right) = f\left( 3 \right)\) có tất cả bao nhiêu nghiệm?
Đáp án: ……….
Xét hàm số \(y = f\left( {{x^2} + 1} \right)\) có \(y' = 2x \cdot f'\left( {{x^2} + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{f'\left( {{x^2} + 1} \right) = 0}\end{array}} \right.\).
Dựa vào hình vẽ, ta thấy \(f'\left( x \right) = 0 \Leftrightarrow x \in \left\{ {1\,;\,\,3\,;\,\,4} \right\}\) (loại nghiệm kép \(x = 2\))
Khi đó \(f'\left( {{x^2} + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} + 1 = 1}\\{{x^2} + 1 = 3}\\{{x^2} + 1 = 4}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} = 0}\\{{x^2} = 2}\\{{x^2} = 3}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \pm \sqrt 2 .}\\{x = \pm \sqrt 3 }\end{array}} \right.} \right.} \right.\)
Bảng biến thiên của \(f\left( {{x^2} + 1} \right)\):
Dựa vào hình vẽ, ta thấy \(f\left( {{x^2} + 1} \right) = f\left( 3 \right)\) có tất cả 4 nghiệm phân biệt.
Đọc đoạn trích sau và trả lời câu hỏi:
Làm chi để tiếng về sau,
Nghìn năm ai có khen đâu Hoàng Sào!
Sao bằng lộc trọng quyền cao,
Công danh ai dứt lối nào cho qua?
Nghe lời nàng nói mặn mà.
(Truyện Kiều – Nguyễn Du)
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = - {x^4} + 6{x^2} + mx\) có ba điểm cực trị?
Đáp án: ……….
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Qua truyện ngắn Chiếc thuyền ngoài xa, Nguyễn Minh Châu đã gửi gắm thông điệp: Nhà văn cần phải thường xuyên xâm nhập đời sống thực tế của xã hội.