II. Thông hiểu
Mỗi nghiệm của phương trình \[7x + 0y = 4\] được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau?
A. Hình 1.
B. Hình 2.
C. Hình 3.
D. Hình 4.
Đáp án đúng là: D
Ta có: \[7x + 0y = 4\] hay \[7x = 4,\] tức là \[x = \frac{4}{7}.\]
Mỗi nghiệm của phương trình \[7x + 0y = 4\] được biểu diễn bởi một điểm nằm trên đường thẳng \[x = \frac{4}{7}\] (Hình 4).
Vậy ta chọn phương án D.
I. Nhận biết
Điều kiện xác định của phương trình \[\frac{1}{x} - \frac{2}{3} = \frac{{5{x^2}}}{{x - 4}}\] là
Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {y + 1} \right) = xy + 4\\\left( {x + 2} \right)\left( {y - 1} \right) = xy - 10\end{array} \right..\] Nghiệm của hệ phương trình trên là
Để giải hệ phương trình \[\left\{ \begin{array}{l}x - 7y = 9\\3x - 5y = 6\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Hệ số \[a,b\] và \[c\] tương ứng của phương trình bậc nhất hai ẩn \[ - 7x - 12 = 0\] là:
Cho hệ phương trình \[\left\{ \begin{array}{l}2x + 9y = 10\\5y - 3x = - 6\end{array} \right.,\] hệ số \[a,b,c\] và \[a',b',c'\] của hệ phương trình theo dạng hệ hai phương trình bậc nhất một ẩn là là
Cho hệ phương trình \[\left\{ \begin{array}{l} - x - 3y = 2\\5x + 9y = - 11\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(x\) theo \(y)\), ta được phương trình ẩn \(y\) là
III. Vận dụng
Cho phương trình \[\frac{1}{{x + 1}} - \frac{{2{x^2} - m}}{{{x^3} + 1}} = \frac{4}{{{x^2} - x + 1}}.\] Biết \[x = 0\] là một nghiệm của phương trình. Nghiệm còn lại là
Hai ngăn của một kệ sách có tổng cộng \[500\] cuốn sách. Nếu chuyển \[75\] cuốn sách từ ngăn thứ nhất sang ngăn thứ hai thì số sách ở ngăn thứ hai gấp \[3\] lần số sách ở ngăn thứ nhất. Khi đó số sách ở ngăn thứ nhất và ngăn thứ hai ban đầu lần lượt là
Cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình nào trong các hệ phương trình sau đây?
Điểm \[M\left( {1;3} \right)\] không thuộc đường thẳng nào sau đây?
Với giá trị dương nào của \[m\] thì phương trình \[2x - {\left( {m - 2} \right)^2}y = 5\] nhận cặp số \[\left( { - 10; - 1} \right)\] làm nghiệm?
Với giá trị nào của \[{x_0}\] để cặp số \[\left( {{x_0}; - 2} \right)\] là nghiệm của phương trình \[x - 7y = 21?\]