Đáp án đúng là: A
Gọi số sản phẩm phải làm theo kế hoạch của mỗi xí nghiệp lần lượt là \(x;\,y\) (sản phẩm) \(\left( {0 < x,\,y < 300;\,x,\,y \in \mathbb{Z}} \right).\)
Vì theo kế hoạch hai xí nghiệp sản xuất được \(300\) sản phẩm do đó ra có phương trình \(x + y = 300\,\,\,\left( 1 \right)\)
Vì thực tế, xí nghiệp I sản xuất vượt mức \(15\% ,\) xí nghiệp II sản xuất vượt mức \(10\% ,\) cả hai xí nghiệp làm tổng cộng \(336\) sản phẩm do đó, ta có phương trình \(1,15x + 1,1y = 336\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình
\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{1,15x + 1,1y = 336}\end{array}} \right.\]
\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]
\[\left\{ {\begin{array}{*{20}{c}}{110x + 110y = 33\,\,000}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]
\[\left\{ \begin{array}{l}5x = 600\\x + y = 300\end{array} \right.\]
\[\left\{ {\begin{array}{*{20}{c}}{x = 120}\\{y = 180}\end{array}} \right.\](thỏa mãn)
Vậy theo kế hoạch xí nghiệp II phải làm \(180\) sản phẩm.
I. Nhận biết
Có mấy bước để giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số?
Gọi \(\left( {x;y} \right)\) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\left( {3x + 2} \right)\left( {2y - 3} \right) = 6xy}\\{\left( {4x + 5} \right)\left( {y - 5} \right) = 4xy}\end{array}} \right..\) Giá trị biểu thức \(A = x.y\) là
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1\,\,\,\left( 1 \right)}\\{3x + 2y = 5\,\,\left( 2 \right)}\end{array}} \right..\)Khi giải hệ phương trình bằng phương pháp thế, ta thế \(x\) ở phương trình \(\left( 1 \right)\) vào phương trình \(\left( 2 \right)\), khi đó ta được phương trình một ẩn là:
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 2\,\,\,\,\,\left( 1 \right)}\\{2x + y = 3\,\,\,\left( 2 \right)}\end{array}} \right..\) Khi giải hệ phương trình bằng phương pháp cộng đại số để được phương trình bậc nhất một ẩn, cách đơn giản nhất là:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = 5}\\{2x + 3y = 8}\end{array}} \right.\)có nghiệm là
Gọi \(\left( {x;y} \right)\) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 3y = 1}\\{x + 4y = 6}\end{array}} \right..\) Giá trị biểu thức \(A = x + y\) là
Với giá trị nào của \(a;\,b\)để đồ thị hàm số \(y = {\rm{ax}} + b\) đi qua hai điểm \(A\left( {2;3} \right)\) và \(B\left( {1; - 4} \right)\) là
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{2}{x} + \frac{1}{y} = 3}\\{\frac{6}{x} - \frac{7}{y} = - 1}\end{array}} \right.\)có nghiệm là
Biết hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ax + 3y = 1}\\{x + by = - 2}\end{array}} \right.\) nhận cặp số \(\left( { - 2;3} \right)\) là một nghiệm. Khi đó giá trị của \(a,\,b\)là
II. Thông hiểu
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 5}\\{x - y = 1}\end{array}} \right.\) có nghiệm là
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3\left( {x + 1} \right) - 2\left( {y - 1} \right) = 4}\\{4\left( {x - 2} \right) + 3\left( {y + 1} \right) = 5}\end{array}} \right.\) có nghiệm là
Nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - 2y = 1}\\{3x - 2y = 3}\end{array}} \right.\) là cặp \(\left( {x;y} \right).\) Khẳng định nào sau đây sai?