Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu?
A. \[8{\rm{ cm}}.\]
B. \[5{\rm{ cm}}.\]
C. \[4{\rm{ cm}}.\]
D. \[2{\rm{ cm}}.\]
Đáp án đúng là: C
Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]
Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]
Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]
Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra \[AO\] là đường trung trực của đoạn BF.
Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]
Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]
Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]
Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).
Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]
Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).
Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]
Phép quay với \[O\] là tâm biến tam giác đều thành chính nó là phép quay thuận chiều một góc
Cho tam giác đều \[ABC\], các đường cao \[AD{\rm{ }},{\rm{ }}BE{\rm{ }},{\rm{ }}CF\] cắt nhau tại H . Gọi \[I{\rm{ }},{\rm{ }}K{\rm{ }},{\rm{ }}M\] theo thứ tự là trung điểm của \[HA{\rm{ }},{\rm{ }}HB{\rm{ }},{\rm{ }}HC\]. Khẳng định nào sau đây là đúng?
III. Vận dụng
Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?
Phép quay giữ nguyên hình đa giác đều \[{A_1}{A_2}{A_3}...{A_n}\,\,\left( {n \ge 3,{\rm{ }}n \in \mathbb{N}} \right)\] là
Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Các phép quay tâm \[O\] giữ nguyên hình ngũ giác đều là
Cho đa giác đều 9 cạnh có tâm \[O\] và \[AB,{\rm{ }}BC\] là hai cạnh của đa giác (như hình vẽ).
Số đo các góc \[\widehat {AOB}\,,\,\,\widehat {ABO}\,,\,\,\widehat {ABC}\] lần lượt là
Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?
Cho hình vuông \[ABCD\] tâm \[O.\] Phép quay ngược chiều 180° tâm O biến các điểm \[A,\,\,B,\,\,C,\,\,D\] thành các điểm nào?
Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào?