Cho phương trình có tham số m:
. (*)
Chỉ ra khẳng định sai trong các khẳng định sau:
A. Phương trình (*) luôn có ba nghiệm phân biệt
B. Khi m = -1 thì phương trình (*) có ba nghiệm phân biệt
C. Khi m = 2 thì phương trình (*) có ba nghiệm phân biệt
D. Khi m = 0 thì phương trình (*) có hai nghiệm phân biệt
Ta có
Phương trình (a) có m2 + 1 >0 với mọi m nên phương trình này luôn có 1 nghiệm
Phương trình (b) có
Nếu m=1 thì phương trình (b) có nghiệm kép . Suy ra, phương trình (*) không thể có 3 nghiệm phân biệt.
Vậy A sai .
Cho phương trình có tham số m: .
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m: . (*)
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m:
Chỉ ra khẳng định sai trong các khẳng định sau:
Phương trình (có tham số m) m(x + m) = 3(x + m) có vô số nghiệm khi
Cho phương trình có tham số m: .
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m:
Chỉ ra khẳng định đúng trong các khẳng định sau:
Phương trình (có tham số m) m(x - m + 2) = m(x - 1) + 2 vô nghiệm khi
Cho các phương trình có tham số m sau:
(1); (2);
(3); (4).
Phương trình luôn vô nghiệm với mọi giá trị của m là:
Cho các phương trình có tham số m sau:
(1); (2);
(3); (4).
Phương trình nào có hai nghiệm phân biệt với mọi giá trị của m?
Chỉ ra khẳng định sai trong các khẳng định sau:
Trường hợp nào sau đây phương trình (m là tham số) có hai nghiệm phân biệt?
Cho các phương trình có tham số m sau:
(1); (2);
(3) ; (4).
Phương trình luôn có nghiệm duy nhất với mọi giá trị của m là: