A.
B.
C.
D.
Phương pháp:
- Mặt phẳng (Q) song song với có dạng
- Thay tọa độ điểm A vào phương trình (Q) tìm hệ số d'.
Cách giải:
Mặt phẳng (P) song song với mặt phẳng nên phương trình mặt phẳng (P) có dạng
Vì
Vậy phương trình mặt phẳng (P) cần tìm là:
Chọn B.
Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên khoảng
Hàm số y = f(x) liên tục trên [2; 9]. F(x) là một nguyên hàm của hàm số f(x) trên [2; 9] và Mệnh đề nào sau đây đúng?
Cho hàm số y = f(x) có đạo hàm . Số điểm cực tiểu của hàm số đã cho là
Cho hàm số bậc ba y = f(x) có đồ thị của hàm số f'(x) như hình vẽ và f(b) = 1. Số giá trị nguyên của để hàm số có đúng 5 điểm cực trị là: