Xác định Parabol (P):\[y = a{x^2} + bx - 5\] biết rằng Parabol đi qua điểm A(3;−4) và có trục đối xứng x = −\(\frac{3}{2}\).
A.\[y = \frac{1}{{18}}{x^2} + \frac{1}{6}x - 5\]
B. \[y = \frac{1}{{18}}{x^2} + \frac{1}{6}x + 5\]
C. \[y = 3{x^2} + 9x - 9\]
D. \[y = - \frac{1}{{18}}{x^2} + \frac{1}{6}x - 5\]
(P) đi qua điểm A(3;−4) nên \[ - 4 = 9a + 3b - 5 \Leftrightarrow 9a + 3b = 1\].
Trục đối xứng \[x = - \frac{b}{{2a}} = - \frac{3}{2} \Leftrightarrow b = 3a\]
Suy ra hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{9a + 3b = 1}\\{3a - b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{1}{{18}}}\\{b = \frac{1}{6}}\end{array}} \right.\)
Vậy phương trình của (P)là:\[y = \frac{1}{{18}}{x^2} + \frac{1}{6}x - 5\]
Đáp án cần chọn là: A
Tìm các giá trị thực của tham số m để phương trình \[\left| {{x^2} - 3x + 2} \right| = m\;\] có bốn nghiệm thực phân biệt.
Tìm giá trị của m để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
Cho đồ thị hàm số \[y = a{x^2} + bx + c\] như hình vẽ.
Khẳng định nào sau đây là đúng:
Một chiếc cổng parabol dạng \[y = - 12{x^2}\;\] có chiều rộng d = 8m. Hãy tính chiều cao h của cổng ?
Tìm các giá trị của tham số m để phương trình \[\frac{1}{2}{x^2} - 4\left| x \right| + 3 = {m^2}\] có 3 nghiệm thực phân biệt.
Tìm các giá trị của tham số m để phương trình \[2{x^2} - 2x + 1 - m = 0\;\]có hai nghiệm phân biệt
Xác định Parabol (P):\[y = a{x^2} + bx + 3\;\] biết rằng Parabol có đỉnh I(3;−2).
Xác định Parabol (P):\[y = a{x^2} + bx + 2\;\] biết rằng Parabol đi qua hai điểm M(1;5) và N(2;−2).
Tìm các giá trị của tham số m để \[2{x^2} - 2(m + 1)x + {m^2} - 2m + 4 \ge 0(\forall x)\]
Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A(0;2),B(−2;5),C(3;8)
Tìm các giá trị của tham số mm để phương trình \[{x^2} - 2(m + 1)x + 1 = 0\;\] có hai nghiệm phân biệt trong đó có đúng một nghiệm thuộc khoảng (0;1).
Tìm các giá trị của m để hàm số \[y = {x^2} + mx + 5\;\] luôn đồng biến trên \[\left( {1; + \infty } \right)\]
Tìm giá trị nhỏ nhất của biểu thức \[P = 3\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} \right) - 8\left( {\frac{a}{b} + \frac{b}{a}} \right)\].
Biết đồ thị hàm số (P):\[y = {x^2} - ({m^2} + 1)x - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ x1,x2. Tìm giá trị của tham số mm để biểu thức \[T = {x_1} + {x_2}\;\] đạt giá trị nhỏ nhất.
Tìm điểm A cố định mà họ đồ thị hàm số \[y = {x^2} + (2 - m)x + 3m\,\,\,\,\,\,\,\,\,\,({P_m})\;\] luôn đi qua.