Từ 5 bông hoa hồng vàng, 3 bông hoa hồng trắng và 4 bông hoa hồng đỏ (các bông hoa xem như đôi một khác nhau), người ta muốn chọn một bó hồng gồm 7 bông, hỏi có bao nhiêu cách chọn bó hoa trong đó có ít nhất 3 bông hoa hồng vàng và ít nhất 3 bông hoa hồng đỏ?
A.10 cách
B.20 cách
C.120 cách
D.150 cách
TH1: Chọn được 3 bông hoa hồng vàng và 4 bông hoa hồng đỏ.
Số cách chọn 3 bông hồng vàng là \[C_5^3 = 10\] cách.
Số cách chọn 4 bông hồng đỏ là \[C_4^4 = 1\] cách.
Theo quy tắc nhân thì có \[10.1 = 10\]cách.
TH2: Chọn được 4 bông hoa hồng vàng và 3 bông hoa hồng đỏ.
Tương tự TH1 ta có số cách chọn là \[C_5^4.C_4^3 = 20\] cách.
TH3: Chọn được 3 bông hoa hồng vàng, 3 bông hoa hồng đỏ và 1 bông hoa hồng trắng.
Tương tự TH1 ta có số cách chọn là \[C_5^3.C_4^3.C_3^1 = 120\] cách.
Vậy theo quy tắc cộng ta có \[10 + 20 + 120 = 150\]cách.
Đáp án cần chọn là: D
Cho tập \[A = \left\{ {2;5} \right\}\] Hỏi có thể lập được bao nhiêu số có 10 chữ số, các chữ số lấy từ tập A sao cho không có chữ số 2 nào đứng cạnh nhau?
Cho các chữ số 0, 1, 2, 4, 5, 7, 8, 9; có thể lập được bao nhiêu số tự nhiên chia hết cho 15, gồm 4 chữ số đôi một khác nhau?
Một lớp có 40 học sinh. Số cách chọn ra 5 bạn để làm trực nhật là:
Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:
Cho 10 điểm trong không gian, trong đó không có 3 điểm nào thẳng hàng. Nếu trong 10 điểm trên không có 4 điểm nào đồng phẳng thì có bao nhiêu tứ diện được tạo thành?
Cho \[k,\,\,n\left( {k < n} \right)\] là các số nguyên dương. Mệnh đề nào sau đây SAI?
Có bao nhiêu số tự nhiên có 4 chữ số mà tổng tất cả các chữ số của số đó bằng 7.
Cho tập \[A = \left\{ {1;2;4;6;7;9} \right\}\] Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.
Một nhóm 4 đường thẳng song song cắt một nhóm 5 đường thẳng song song khác. Hỏi có bao nhiêu hình bình hành được tạo thành?
Một lớp học có nn học sinh (n>3). Thầy chủ nhiệm cần chọn ra một nhóm và cần cử ra 1 học sinh trong nhóm đó làm nhóm trưởng. Số học sinh trong mỗi nhóm phải lớn hơn 1 và nhỏ hơn n. Gọi T là số cách chọn. Lúc này: