Đạo hàm của hàm số \[y = \sin 2x\] là:
A.\[y' = \cos 2x\]
B. \[ - \cos 2x\]
C. \[2\cos 2x\]
D. \[ - 2\cos 2x\]
Bước 1:
\[\begin{array}{*{20}{l}}{y = \sin 2x = 2\sin x\cos x}\\{ \Rightarrow y' = {{\left( {2\sin x\cos x} \right)}^\prime }}\\{ = 2{{\left( {\sin x\cos x} \right)}^\prime }}\\{ = 2\left[ {{{\left( {\sin x} \right)}^\prime }.\cos x + \sin x.{{\left( {\cos x} \right)}^\prime }} \right]}\end{array}\]
Bước 2:
\[ = 2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) = 2\cos 2x\]
Đáp án cần chọn là: C
Cho hàm số \[f\left( x \right) = {x^3} - 3{x^2} + 1\]. Đạo hàm của hàm số f(x) âm khi và chỉ khi
Tính đạo hàm của hàm số \[y = \frac{{\sin 2x + 2}}{{\cos 2x + 3}}\]
Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 1\,khi\,x > 1}\\{2x + 2\,\,khi\,x \le 1}\end{array}} \right.\) ta được:
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Cho hàm số y=f(x) có đạo hàm trên \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1)
Cho hàm số f(x) có đạo hàm \[f\prime (x) = 2x + 4\;\] với mọi \[x \in \mathbb{R}\]. Hàm số \[g(x) = 2f(x) + 3x - 1\;\] có đạo hàm là
Cho hàm số \[f\left( x \right) = \left( {x - 2} \right)\sqrt {{x^2} - 1} \], tìm tập nghiệm S của bất phương trình \[f\prime (x) \le \sqrt {{x^2} - 1} \]
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]