Cho hàm số \[y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\]. Đạo hàm y’ của hàm số là:
A.\[y' = \frac{{ - 13{x^2} - 10x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
B. \[y' = \frac{{ - 13{x^2} + 5x + 11}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
C. \[y' = \frac{{ - 13{x^2} + 5x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
D. \[y' = \frac{{ - 13{x^2} + 10x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
\[y\prime = \frac{{(2{x^2} + 3x - 1)\prime ({x^2} - 5x + 2) - (2{x^2} + 3x - 1)({x^2} - 5x + 2)\prime }}{{{{({x^2} - 5x + 2)}^2}}}\]
\[y\prime = \frac{{(4x + 3)({x^2} - 5x + 2) - (2{x^2} + 3x - 1)(2x - 5)}}{{{{({x^2} - 5x + 2)}^2}}}\]
\( = \frac{{4{x^3} - 20{x^2} + 8x + 3{x^2} - 15x + 6 - 4{x^3} - 6{x^2} + 2x + 10{x^2} + 15x - 5}}{{{{({x^2} - 5x + 2)}^2}}}\)
\[y\prime = \frac{{ - 13{x^2} + 10x + 1}}{{{{({x^2} - 5x + 2)}^2}}}\]
Đáp án cần chọn là: D
Cho hàm số \[f\left( x \right) = {x^3} - 3{x^2} + 1\]. Đạo hàm của hàm số f(x) âm khi và chỉ khi
Tính đạo hàm của hàm số \[y = \frac{{\sin 2x + 2}}{{\cos 2x + 3}}\]
Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 1\,khi\,x > 1}\\{2x + 2\,\,khi\,x \le 1}\end{array}} \right.\) ta được:
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Cho hàm số y=f(x) có đạo hàm trên \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1)
Cho hàm số f(x) có đạo hàm \[f\prime (x) = 2x + 4\;\] với mọi \[x \in \mathbb{R}\]. Hàm số \[g(x) = 2f(x) + 3x - 1\;\] có đạo hàm là
Cho hàm số \[f\left( x \right) = \left( {x - 2} \right)\sqrt {{x^2} - 1} \], tìm tập nghiệm S của bất phương trình \[f\prime (x) \le \sqrt {{x^2} - 1} \]
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]