Đạo hàm của hàm số \[y = {\tan ^2}x - co{t^2}x\] là:
A.\[y' = 2\frac{{\tan x}}{{{{\cos }^2}x}} + 2\frac{{\cot x}}{{{{\sin }^2}x}}\]
B. \[y' = 2\frac{{\tan x}}{{{{\cos }^2}x}} - 2\frac{{\cot x}}{{{{\sin }^2}x}}\]
C.\[y' = 2\frac{{\tan x}}{{{{\sin }^2}x}} + 2\frac{{\cot x}}{{{{\cos }^2}x}}\]
D. \[y' = 2\tan x - 2\cot x\]
\[y = ta{n^2}x - co{t^2}x = (tanx - cotx)(tanx + cotx)\]
\[y\prime = (tanx - cotx)\prime (tanx + cotx) + (tanx - cotx)(tanx + cotx)\prime \]
\[y\prime = (\frac{1}{{co{s^2}x}} + \frac{1}{{si{n^2}x}})(tanx + cotx) + (tanx - cotx)(\frac{1}{{co{s^2}x}} - \frac{1}{{si{n^2}x}})\]
\[y\prime = \frac{{tanx}}{{co{s^2}x}} + \frac{{cotx}}{{co{s^2}x}} + \frac{{tanx}}{{si{n^2}x}} + \frac{{cotx}}{{si{n^2}x}} + \frac{{tanx}}{{co{s^2}x}} - \frac{{tanx}}{{si{n^2}x}} - \frac{{cotx}}{{co{s^2}x}} + \frac{{cotx}}{{si{n^2}x}}\]
\[y\prime = 2\frac{{tanx}}{{co{s^2}x}} + 2\frac{{cotx}}{{si{n^2}x}}\]
Đáp án cần chọn là: A
Cho hàm số \[f\left( x \right) = {x^3} - 3{x^2} + 1\]. Đạo hàm của hàm số f(x) âm khi và chỉ khi
Tính đạo hàm của hàm số \[y = \frac{{\sin 2x + 2}}{{\cos 2x + 3}}\]
Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 1\,khi\,x > 1}\\{2x + 2\,\,khi\,x \le 1}\end{array}} \right.\) ta được:
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Cho hàm số y=f(x) có đạo hàm trên \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1)
Cho hàm số f(x) có đạo hàm \[f\prime (x) = 2x + 4\;\] với mọi \[x \in \mathbb{R}\]. Hàm số \[g(x) = 2f(x) + 3x - 1\;\] có đạo hàm là
Cho hàm số \[f\left( x \right) = \left( {x - 2} \right)\sqrt {{x^2} - 1} \], tìm tập nghiệm S của bất phương trình \[f\prime (x) \le \sqrt {{x^2} - 1} \]
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]