IMG-LOGO

Câu hỏi:

14/07/2024 99

Cho hai số thực dương x,y thỏa mãn \[{2^x} + {2^y} = 4\]. Tìm giá trị lớn nhất PmaxPmax của biểu thức\[P = (2{x^2} + y)(2{y^2} + x) + 9xy\].

A.18

Đáp án chính xác

B.12

C.27

D.\[\frac{{27}}{2}\]

Trả lời:

verified Giải bởi Vietjack

Ta có:

\[\begin{array}{l}4 = {2^x} + {2^y} \ge 2\sqrt {{2^x}{{.2}^y}} \\ \Rightarrow 2 \ge \sqrt {{2^x}{2^y}} \\ \Rightarrow 4 \ge {2^{x + y}}\\ \Rightarrow 0 < x + y \le 2\\ \Rightarrow {(x + y)^2} \le 4\end{array}\]

Lại có\[x + y \ge 2\sqrt {xy} \Rightarrow xy \le 1\]

\[\begin{array}{*{20}{l}}{ \Rightarrow P = 4{x^2}{y^2} + 2{x^3} + 2{y^3} + 10xy}\\{ = 4{{\left( {xy} \right)}^2} + 10xy + 2\left( {{x^3} + {y^3}} \right)}\\{ = 4{{\left( {xy} \right)}^2} + 10xy}\\{ + 2.\left( {x + y} \right).\left[ {{{\left( {x + y} \right)}^2} - 3xy} \right]}\\{ \Rightarrow P \le 4{{\left( {xy} \right)}^2} + 10xy + 2.2.\left( {4 - 3xy} \right)}\\{ \Rightarrow P \le 4{{\left( {xy} \right)}^2} - 2xy + 16}\end{array}\]

Đặt \[xy = t \Rightarrow 0 < t \le 1\]

Xét hàm số \[f\left( t \right) = 4{t^2} - 2t + 16\] trên\[\left( {0;1} \right]\]

\[ \Rightarrow f\left( t \right) \le \max \left\{ {f\left( 1 \right),f\left( 0 \right)} \right\} = 18\]

Dấu “=” xảy ra khi và chỉ khi x = y = 1.

Vậy\[{P_{\max }} = 18 \Leftrightarrow x = y = 1\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn khẳng định đúng:

Xem đáp án » 13/10/2022 212

Câu 2:

Tập xác định của hàm số \[y = {2^x}\] là:

Xem đáp án » 13/10/2022 200

Câu 3:

Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 13/10/2022 195

Câu 4:

Hàm số \[y = {a^x}(0 < a \ne 1)\] đồng biến khi nào?

Xem đáp án » 13/10/2022 172

Câu 5:

Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:

Cho các đồ thị hàm số (ảnh 1)

Xem đáp án » 13/10/2022 159

Câu 6:

Đồ thị sau là đồ thị hàm số nào?

Xem đáp án » 13/10/2022 156

Câu 7:

Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?

Cho hai hàm số y = a^x , y = b^x  với  1 # a , b > 0 lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng? (ảnh 1)

Xem đáp án » 13/10/2022 143

Câu 8:

Cho a là số thực dương khác 1. Xét hai số thực x1, x2. Phát biểu nào sau đây là đúng?

Xem đáp án » 13/10/2022 140

Câu 9:

Chọn mệnh đề đúng:

Xem đáp án » 13/10/2022 137

Câu 10:

Chọn mệnh đề đúng:

Xem đáp án » 13/10/2022 137

Câu 11:

Cho hàm số \[f(x) = {(3 - \sqrt 2 )^{{x^3}}} - {\left( {3 - \sqrt 2 } \right)^{ - {x^2}}}\]. Xét các khẳng định sau:

Khẳng định 1: \[f(x) > 0 \Leftrightarrow {x^3} + {x^2} > 0\]

Khẳng định 2: \[f(x) > 0 \Leftrightarrow x > - 1\]

Khẳng định 3: \[f(x) < 3 - \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} - 1}} < 1 + {\left( {\frac{{3 + \sqrt 2 }}{7}} \right)^{{x^2} + 1}}\]

Khẳng định 4:\[f(x) < 3 + \sqrt 2 \Leftrightarrow {(3 - \sqrt 2 )^{{x^3} + 1}} < {(3 - \sqrt 2 )^{1 - {x^2}}} + 7\]

Trong các khẳng định trên, có bao nhiêu khẳng định đúng?

Xem đáp án » 13/10/2022 136

Câu 12:

Chọn mệnh đề đúng:

Xem đáp án » 13/10/2022 134

Câu 13:

Cho các số thực dương a,b khác 1. Biết rằng đường thẳng y=2 cắt đồ thị các hàm số \[y = {a^x};y = {b^x}\;\] và trục tung lần lượt tại A,B,C sao cho C nằm giữa A và B, và AC=2BC. Khẳng định nào dưới đây đúng?

Xem đáp án » 13/10/2022 133

Câu 14:

Tính đạo hàm của hàm số \[y = {6^x}\]

Xem đáp án » 13/10/2022 132

Câu 15:

Cho hàm số \[f\left( x \right) = \frac{1}{{3 + {2^x}}} + \frac{1}{{3 + {2^{ - x}}}}\]. Trong các khẳng định, có bao nhiêu khẳng định đúng?

1) \[f\prime (x) \ne 0,\forall x \in R\]

2) \[f\left( 1 \right) + f\left( 2 \right) + ... + f\left( {2017} \right) = 2017\]

3) \[f({x^2}) = \frac{1}{{3 + {4^x}}} + \frac{1}{{3 + {4^{ - x}}}}\]

Xem đáp án » 13/10/2022 130

Câu hỏi mới nhất

Xem thêm »
Xem thêm »