Cho \[m \in {N^ * }\] so sánh nào sau đây không đúng?
A.\[{\left( {\frac{3}{4}} \right)^m} > {\left( {\frac{1}{2}} \right)^m}\]
B. \[1 < {\left( {\frac{4}{3}} \right)^m}\]
C. \[{\left( {\frac{2}{3}} \right)^m} < {\left( {\frac{3}{4}} \right)^m}\]
D. \[{\left( {\frac{{13}}{7}} \right)^m} > {2^m}\]
Đáp án A: Vì \[\frac{3}{4} > \frac{1}{2},m \in {N^ * }\] nên\[{\left( {\frac{3}{4}} \right)^m} > {\left( {\frac{1}{2}} \right)^m}\] (đúng).
Đáp án B: Vì\[\frac{4}{3} > 1,m \in {N^ * }\] nên\[1 = {1^m} < {\left( {\frac{4}{3}} \right)^m}\] (đúng).
Đáp án C: Vì \[\frac{2}{3},\frac{3}{4},m \in {N^ * }\] nên\[{\left( {\frac{2}{3}} \right)^m} < {\left( {\frac{3}{4}} \right)^m}\] (đúng).
Đáp án D: Vì \[\frac{{13}}{7} < 2,m \in {N^ * }\] nên\[{\left( {\frac{{13}}{7}} \right)^m} < {2^m}\] (D sai).
Đáp án cần chọn là: D
Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:
Với giá trị nào của a thì đẳng thức \[\,\,\,\,\,\sqrt {a.\sqrt[3]{{a.\sqrt[4]{a}}}} = \sqrt[{24}]{{{2^5}}}.\frac{1}{{\sqrt {{2^{ - 1}}} }}\]đúng?
Đơn giản biểu thức \[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\] ta được:
Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?
Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].
Giá trị biểu thức \[P = \frac{{{{125}^6}.\left( { - {{16}^3}} \right)2.\left( { - {2^3}} \right)}}{{{{25}^3}.{{\left( { - {5^2}} \right)}^4}}}\] là:
Rút gọn biểu thức \[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\left( {a > 0,b > 0,a \ne b} \right)\] ta được kết quả là:
Đơn giản biểu thức \[P = \left( {{a^{\frac{1}{4}}} - {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{4}}} + {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{2}}} + {b^{\frac{1}{2}}}} \right)\,\,\,\,(a,b > 0)\] ta được:
Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:
Rút gọn biểu thức \[B = \frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\] ta được kết quả là: