Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 153

Cho hàm số \[y = {x^4} - 2m{x^2} + {m^2} + m.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có một góc 120o là:

A.\[m = \frac{1}{{\sqrt[3]{3}}}\]

Đáp án chính xác

B. \[m = 0;\,m = \frac{1}{{\sqrt[3]{3}}}\]

C. \[m = \frac{1}{{\sqrt[3]{2}}}\]

D. \[m = 1\]

Trả lời:

verified Giải bởi Vietjack

\[\begin{array}{l}y\prime = 4{x^3} - 4mx\\y\prime = 0 \Leftrightarrow 4{x^3} - 4mx = 0 \Leftrightarrow 4x({x^2} - m) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \pm \sqrt m }\end{array}} \right.\end{array}\]

Điều kiện để hàm số có 3 cực trị: m>0

\[\begin{array}{*{20}{l}}{x = 0 \Rightarrow A\left( {0;\,{m^2} + m} \right)}\\{x = - \sqrt m \Rightarrow y = {{\left( { - \sqrt m } \right)}^4} - 2m{{\left( { - \sqrt m } \right)}^2} + {m^2} + m}\\{ = {m^2} - 2{m^2} + {m^2} + m = m \Rightarrow B\left( { - \sqrt m ;\,m} \right)}\\{x = \sqrt m \Rightarrow C\left( {\sqrt m ;\,m} \right)}\end{array}\]

Cho hàm số y = x^4 − 2 m x^2 + m^2 + m .  . Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có một góc 120o là: (ảnh 1)

\[\begin{array}{l}\overrightarrow {AB} = ( - \sqrt m ; - {m^2}),\overrightarrow {AC} = (\sqrt m ; - {m^2})\\\widehat {BAC} = {120^0}\end{array}\]

\(\begin{array}{l} \Leftrightarrow \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = cos{120^0}\\ \Leftrightarrow \frac{{ - m + {m^4}}}{{\sqrt {m + {m^4}} .\sqrt {m + {m^4}} }} = - \frac{1}{2}\\ \Leftrightarrow 2({m^4} - m) = - (m + {m^4})\\ \Leftrightarrow 3{m^4} - m = 0\\ \Leftrightarrow m(3{m^3} - 1) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0(loai)}\\{m = \frac{1}{{\sqrt[3]{3}}}}\end{array}} \right.\end{array}\)

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.

Xem đáp án » 13/10/2022 177

Câu 2:

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm  (ảnh 1)

Xem đáp án » 13/10/2022 170

Câu 3:

Tìm tất cả các giá trị của m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + x - 1\]  có cực đại và cực tiểu.

Xem đáp án » 13/10/2022 142

Câu 4:

Cho hàm số \[y = 2{x^4} - \left( {m + 1} \right){x^2} - 2.\]. Tất cả các giá trị của m để hàm số có 1 điểm cực trị là:

Xem đáp án » 13/10/2022 140

Câu 5:

Cho hàm số \[y = {x^4} - 2m{x^2} + 3m + 2.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác đều là:

Xem đáp án » 13/10/2022 136

Câu 6:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + 2\;\] đạt cực tiểu tại x=1.

Xem đáp án » 13/10/2022 134

Câu 7:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \[y = \mid 3{x^4} - 4{x^3} - 12{x^2} + m\mid \;\] có 5 điểm cực trị?

Xem đáp án » 13/10/2022 124

Câu 8:

Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\]

Xem đáp án » 13/10/2022 123

Câu 9:

Gọi \[{m_0}\]  là giá trị của mm thỏa mãn đồ thị hàm số \[y = \frac{{{x^2} + mx - 5}}{{{x^2} + 1}}\] có hai điểm cực trị A,B  sao cho đường thẳng AB đi qua điểm I(1;−3). Khẳng định nào sau đây là đúng?

Xem đáp án » 13/10/2022 123

Câu 10:

Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.

Xem đáp án » 13/10/2022 122

Câu 11:

Hàm số \[f\left( x \right) = \left| {\frac{x}{{{x^2} + 1}} - m} \right|\] (với m là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Xem đáp án » 13/10/2022 121

Câu 12:

Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?

Xem đáp án » 13/10/2022 117

Câu 13:

Cho hàm số \[y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.\]. Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng \(4\sqrt 2 \)là

Xem đáp án » 13/10/2022 113

Câu 14:

Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.\]. Tìm mm để đồ thị hàm số có hai điểm cực trị là A,B sao cho đường thẳng AB vuông góc với \[d:x - y - 9 = 0\]

Xem đáp án » 13/10/2022 113

Câu 15:

Cho hàm số \[y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6\] với mm là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị \[{x_1},{x_2}\] thỏa mãn \[{x_1} < - 1 < {x_2}\]

Xem đáp án » 13/10/2022 112

Câu hỏi mới nhất

Xem thêm »
Xem thêm »