Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

11/07/2024 124

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \[y = \mid 3{x^4} - 4{x^3} - 12{x^2} + m\mid \;\] có 5 điểm cực trị?

A.26.

B.27.

Đáp án chính xác

C.16.

D.28.

Trả lời:

verified Giải bởi Vietjack

Xét hàm số \[f\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2}\] ta có

\[\begin{array}{l}f\prime (x) = 12{x^3} - 12{x^2} - 24x\\f\prime (x) = 0 \Leftrightarrow 12{x^3} - 12{x^2} - 24x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 1}\\{x = 2}\end{array}} \right.\end{array}\]

BBT:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  (ảnh 1)

Ta có đồ thị \[y = f\left( x \right)\,\,\left( C \right)\] như sau:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  (ảnh 2)

Để\[y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\] có 5 điểm cực trị thì:

TH1: (C) cắt đường thẳng y=−m tại 2 điểm phân biệt khác cực trị

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m > 0}\\{ - 32 < - m < - 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m < 0}\\{5 < m < 32}\end{array}} \right.\)

Mà\[m \in {\mathbb{Z}^ + }\, \Rightarrow m \in \left\{ {6;7;...;31} \right\}\] 26 giá trị.

TH2: (C) cắt đường thẳng y=−m tại 3 điểm phân biệt, trong đó có 1 cực trị

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m = 0}\\{ - m = - 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0(L)}\\{m = 5(TM)}\end{array}} \right.\)

Vậy, có tất cả 27 giá trị của m thỏa mãn.

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.

Xem đáp án » 13/10/2022 177

Câu 2:

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm  (ảnh 1)

Xem đáp án » 13/10/2022 169

Câu 3:

Cho hàm số \[y = {x^4} - 2m{x^2} + {m^2} + m.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có một góc 120o là:

Xem đáp án » 13/10/2022 152

Câu 4:

Tìm tất cả các giá trị của m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + x - 1\]  có cực đại và cực tiểu.

Xem đáp án » 13/10/2022 142

Câu 5:

Cho hàm số \[y = 2{x^4} - \left( {m + 1} \right){x^2} - 2.\]. Tất cả các giá trị của m để hàm số có 1 điểm cực trị là:

Xem đáp án » 13/10/2022 140

Câu 6:

Cho hàm số \[y = {x^4} - 2m{x^2} + 3m + 2.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác đều là:

Xem đáp án » 13/10/2022 136

Câu 7:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + 2\;\] đạt cực tiểu tại x=1.

Xem đáp án » 13/10/2022 134

Câu 8:

Gọi \[{m_0}\]  là giá trị của mm thỏa mãn đồ thị hàm số \[y = \frac{{{x^2} + mx - 5}}{{{x^2} + 1}}\] có hai điểm cực trị A,B  sao cho đường thẳng AB đi qua điểm I(1;−3). Khẳng định nào sau đây là đúng?

Xem đáp án » 13/10/2022 123

Câu 9:

Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\]

Xem đáp án » 13/10/2022 121

Câu 10:

Hàm số \[f\left( x \right) = \left| {\frac{x}{{{x^2} + 1}} - m} \right|\] (với m là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Xem đáp án » 13/10/2022 121

Câu 11:

Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.

Xem đáp án » 13/10/2022 121

Câu 12:

Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?

Xem đáp án » 13/10/2022 117

Câu 13:

Cho hàm số \[y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.\]. Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng \(4\sqrt 2 \)là

Xem đáp án » 13/10/2022 113

Câu 14:

Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.\]. Tìm mm để đồ thị hàm số có hai điểm cực trị là A,B sao cho đường thẳng AB vuông góc với \[d:x - y - 9 = 0\]

Xem đáp án » 13/10/2022 112

Câu 15:

Cho hàm số \[y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6\] với mm là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị \[{x_1},{x_2}\] thỏa mãn \[{x_1} < - 1 < {x_2}\]

Xem đáp án » 13/10/2022 112

Câu hỏi mới nhất

Xem thêm »
Xem thêm »