IMG-LOGO

Câu hỏi:

11/07/2024 119

Biết \[\smallint f\left( u \right)du = F\left( u \right) + C\]. Tìm khẳng định đúng


A.\[\smallint f(5x + 2)dx = 5F(x) + 2 + C\]



B. \[\smallint f(5x + 2)dx = F(5x + 2) + C\]



C. \[\smallint f(5x + 2)dx = \frac{1}{5}F(5x + 2) + C\]


Đáp án chính xác


D. \[\smallint f(5x + 2)dx = 5F(5x + 2) + C\]


Trả lời:

verified Giải bởi Vietjack

Đặt \[u = 5x + 2 \Rightarrow du = 5dx\]

\[ \Rightarrow \smallint f(5x + 2)dx = \smallint f\left( u \right).\frac{1}{5}du = \frac{1}{5}\smallint f\left( u \right)du\]

\[ = \frac{1}{5}F\left( u \right) + C = \frac{1}{5}F\left( {5x + 2} \right) + C\]
Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nguyên hàm của hàm số \[y = \cot x\] là:

Xem đáp án » 13/10/2022 171

Câu 2:

Nếu \[t = {x^2}\] thì:

Xem đáp án » 13/10/2022 170

Câu 3:

Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.

Xem đáp án » 13/10/2022 139

Câu 4:

Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là

Xem đáp án » 13/10/2022 139

Câu 5:

Tính \[I = \smallint 3{x^5}\sqrt {{x^3} + 1} dx\]

Xem đáp án » 13/10/2022 132

Câu 6:

Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì

Xem đáp án » 13/10/2022 131

Câu 7:

Cho \[f\left( x \right) = \sin 2x\sqrt {1 - {{\cos }^2}x} \]. Nếu đặt \[\sqrt {1 - {{\cos }^2}x} = t\] thì:

Xem đáp án » 13/10/2022 128

Câu 8:

Nếu \[t = u\left( x \right)\]thì:

Xem đáp án » 13/10/2022 122

Câu 9:

Cho hàm số \[f\left( x \right) = \frac{1}{{{x^2} + 1}}\]. Khi đó, nếu đặt x=tant thì:

Xem đáp án » 13/10/2022 120

Câu 10:

Nếu có \[x = cott\;\] thì:

Xem đáp án » 13/10/2022 116

Câu 11:

Cho \[F\left( x \right) = \smallint \frac{x}{{1 + \sqrt {1 + x} }}dx\]và \[F\left( 3 \right) - F\left( 0 \right) = \frac{a}{b}\] là phân số tối giản , a>0. Tổng a+b bằng ?

Xem đáp án » 13/10/2022 113

Câu 12:

Cho nguyên hàm \[I = \smallint \frac{{6tanx}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx\] . Giả sử đặt \[u = \sqrt {3tanx + 1} \;\] thì ta được:

Xem đáp án » 13/10/2022 112

Câu 13:

Cho nguyên hàm \[I = \smallint \frac{{{e^{2x}}}}{{\left( {{e^x} + 1} \right)\sqrt {{e^x} + 1} }}dx = a\left( {t + \frac{1}{t}} \right) + C\] với \[t = \sqrt {{e^x} + 1} \;\], giá trị a bằng?

Xem đáp án » 13/10/2022 111

Câu 14:

Cho \[f\left( x \right) = \frac{{{x^2}}}{{\sqrt {1 - x} }}\] và \[\smallint f(x)dx = - 2\smallint {({t^2} - m)^2}dt\]với \[t = \sqrt {1 - x} \;\], giá trị của m bằng ?

Xem đáp án » 13/10/2022 109

Câu 15:

Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = x\sqrt {{x^2} - m} \]. Số giá trị của tham số m để \[F\left( {\sqrt 2 } \right) = \frac{7}{3}\] và \[F\left( {\sqrt 5 } \right) = \frac{{14}}{3}\;\] là:

Xem đáp án » 13/10/2022 108

Câu hỏi mới nhất

Xem thêm »
Xem thêm »