Cho hàm số f(x) có \[f\left( 2 \right) = 0\;\] và \[f\prime (x) = \frac{{x + 7}}{{\sqrt {2x - 3} }},\;\forall x \in (\frac{3}{2}; + \infty )\;\]. Biết rằng \[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}(a,b \in \mathbb{Z},b > 0,\frac{a}{b}\] là phân số tối giản). Khi đó a+b bằng:
A.250
B.251
C.133
D.221
Xét tích phân\[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}\]
Đặt\[t = \frac{x}{2} \Rightarrow dt = \frac{1}{2}dx \Leftrightarrow dx = 2dt\] Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 4 \Rightarrow t = 2}\\{x = 7 \Rightarrow t = \frac{7}{2}}\end{array}} \right.\)
Khi đó ta có:\[I = 2\mathop \smallint \limits_2^{\frac{7}{2}} f\left( t \right)dt\]
Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(t)}\\{dv = dt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (t)dt}\\{v = t - \frac{7}{2}}\end{array}} \right.\) khi đó ta có:
\[I = 2\left( {\left( {t - \frac{7}{2}} \right)f(t)\mid _2^{\frac{\pi }{2}} - \int\limits_2^{\frac{7}{2}} {\left( {t - \frac{7}{2}} \right)} f\prime (t)dt} \right)\]
\(I = 2\left( {\frac{7}{2}f\left( 0 \right) - \int\limits_2^{\frac{7}{2}} {\left( {x - \frac{7}{2}} \right)f'\left( x \right)dx} } \right)\)
\(I = 2\left( {\frac{7}{2}f\left( 2 \right) - \int\limits_2^{\frac{7}{2}} {\left( {x - \frac{7}{2}} \right).\frac{{x + 7}}{{\sqrt {2x - 3} }}dx} } \right)\)
\(I = - 2\int\limits_2^{\frac{7}{2}} {\left( {x - \frac{7}{2}} \right)} .\frac{{x + 7}}{{\sqrt {2x - 3} }}dx\)
\(I = \frac{{236}}{{15}}\)
\[ \Rightarrow a = 236,b = 15\]
Vậy\[a + b = 236 + 15 = 251\]
Đáp án cần chọn là: B
Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt
Cho f(x),g(x) là hai hàm số có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\;\]và thỏa mãn điều kiện \[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = 1,\int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx = 2\]. Tính tích phân \(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx\)A.I=2
Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)
Cho hàm số f(x) liên tục trên \[\left( { - \frac{1}{2};2} \right)\;\]thỏa mãn \[f\left( 0 \right) = 2\], \({\int\limits_0^1 {\left[ {f'\left( x \right)} \right]} ^2}dx = 12 - 16\ln 2,\int\limits_0^1 {\frac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}} dx = 4\ln 2 - 2\). Tính \(\int\limits_0^1 {f\left( x \right)} dx\)
Giả sử tích phân \[I = \mathop \smallint \limits_0^4 x\ln {\left( {2x + 1} \right)^{2017}}dx = a + \frac{b}{c}\ln 3.\]. Với phân số \(\frac{b}{c}\) tối giản. Lúc đó :
Cho tích phân \[I = \mathop \smallint \limits_1^2 \frac{{x + \ln x}}{{{{\left( {x + 1} \right)}^3}}}{\rm{d}}x = a + b.\ln 2 - c.\ln 3\]với\[a,b,c \in R\], tỉ số \(\frac{c}{a}\) bằng
Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x = \frac{{m - \pi }}{{m + \pi }}\], giá trị của m bằng :
Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì
Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {1;3} \right],\]thỏa mãn \[f(4 - x) = f(x),\forall x \in \left[ {1;3} \right]\;\] và \[\mathop \smallint \limits_1^3 xf\left( x \right)dx = - 2\]. Giá trị \(2\mathop \smallint \limits_1^3 f\left( x \right)dx\) bằng
Cho \[I = \mathop \smallint \limits_0^1 \left( {x + \sqrt {{x^2} + 15} } \right)dx = a + b\ln 3 + c\ln 5\] với \[a,b,c \in \mathbb{Q}\]. Tính tổng a+b+c.
Cho tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} \frac{{\ln \left( {3\sin x + \cos x} \right)}}{{{{\sin }^2}x}}{\rm{d}}x = m.\ln \sqrt 2 + n.\ln 3 - \frac{\pi }{4}\], tổng m+n
Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^x}\sin x\]. Gọi a,ba,b là các số nguyên thỏa mãn \[I = \frac{{{e^{\frac{\pi }{2}}} + a}}{b}\]
Tích phân: \[I = \mathop \smallint \limits_1^e 2x(1 - \ln x)\,dx\] bằng
Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]
Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện \[x.f({x^3}) + f({x^2} - 1) = {e^{{x^2}}},\;\forall x \in \mathbb{R}\]. Khi đó giá trị của \(\int\limits_{ - 1}^0 {f\left( x \right)dx} \) là: