Cho số phức \[z = \left( {m + 3} \right) + \left( {{m^2} - m - 6} \right)i\] với \[m \in \mathbb{R}\] Gọi (P) là tập hợp điểm biểu diễn số phức z trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi (P) và trục hoành bằng
A.\[\frac{{125}}{6}\]
B. \[\frac{{17}}{6}\]
C. 1
D. \[\frac{{55}}{6}\]
Ta có\[z = \left( {m + 3} \right) + \left( {{m^2} - m - 6} \right)i\] được biểu diễn bởi điểm M(x;y) với
\(\left\{ {\begin{array}{*{20}{c}}{x = m + 3}\\{y = {m^2} - m - 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = x - 3}\\{y = {{(x - 3)}^2} - (x - 3) - 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = x - 3}\\{y = {x^2} - 7x + 6}\end{array}} \right.\)
Vậy tập hợp điểm biểu diễn số phức z là parabol\[\left( P \right):y = {x^2} - 7x + 6\]
Hoành độ giao điểm của parabol (P) với trục hoành là\[{x^2} - 7x + 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 6}\end{array}} \right.\]
Diện tích hình phẳng giới hạn bởi (P) và trục hoành bằng
\[S = \mathop \smallint \limits_1^6 \left| {{x^2} - 7x + 6} \right|dx = \left| {\mathop \smallint \limits_1^6 \left( {{x^2} - 7x + 6} \right)dx} \right| = \frac{{125}}{6}\]
Đáp án cần chọn là: A
Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]
Cho số phức \[z = 2 + 5i\]. Tìm số phức \[w = iz + \overline z \]
Cho số phức z thỏa mãn \[(1 + i)z = 3 - i\]. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình bên ?
Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \[{z_1} = - 1 + i,\;{z_2} = 1 + 2i,{z_3} = 2 - i,{z_4} = - 3i\]. Gọi S diện tích tứ giác ABCD. Tính S.
Cho số phức z thỏa mãn (2−i)z=7−i . Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình dưới.
Gọi M và N lần lượt là điểm biểu diễn của các số phức \[{z_1};{z_2}\;\] khác 0. Khi đó khẳng định nào sau đây sai ?
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?
Tập hợp các điểm trong mặt phẳng tọa độ biểu diễn số phức z thoả mãn điều kiện \[2\left| {z - i} \right| = \left| {z - \overline z + 2i} \right|\] là hình gì?
Cho các số phức \[{z_1} = 3 - 2i,{z_2} = 1 + 4i\] và \[{z_3} = - 1 + i\;\] có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm A,B,C. Diện tích tam giác ABC bằng:
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là:
Cho các số phức \[{z_1} = 2,{z_2} = - 4i,{z_3} = 2 - 4i\] có điểm biểu diễn tương ứng trên mặt phẳng tọa độ Oxy là A, B, C. Diện tích tam giác ABC bằng
Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.
Hỏi hình nào biểu diễn cho số phức \[w = \frac{i}{{\overline z }}\]
Cho số phức z thỏa mãn \[{\left( {1 + z} \right)^2}\] là số thực. Tập hợp điểm MM biểu diễn số phức z là: