Cho \[\alpha ,\beta \] lần lượt là góc giữa hai véc tơ pháp tuyến bất kì và góc giữa hai mặt phẳng (P) và (Q). Chọn nhận định đúng:
A.\[\alpha = \beta \]
B. \[\alpha = {180^0} - \beta \]
C. \[\sin \alpha = \sin \beta \]
D. \[\cos \alpha = \cos \beta \]
Ta có:\[\cos \beta = \cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right|\]
\[ = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {a.a' + b.b' + c.c'} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{a^{\prime 2}} + {b^{\prime 2}} + {c^{\prime 2}}} }}\]
Do đó \[0 \le \beta \le {90^0}\]trong khi\[0 \le \alpha \le {180^0}\]nên hai góc này có thể bằng nhau cũng có thể bù nhau, do đó A, B sai.
Ngoài ra, khi \[\alpha = \beta \] hay\[\alpha = {180^0} - \beta \] thì ta đều có\[\sin \alpha = \sin \beta \]nên C đúng.
D sai trong trường hợp hai góc bù nhau.
Đáp án cần chọn là: C
Cho mặt phẳng \[\left( P \right):2x - z + 1 = 0\], tìm một véc tơ pháp tuyến của mặt phẳng (P)?
Mặt phẳng \[\left( P \right):ax - by - cz - d = 0\]có một VTPT là:
Cho hai mặt phẳng \[\left( P \right):ax + by + cz + d = 0;\left( Q \right):a'x + b'y + c'z + d' = 0\]. Nếu có \[\frac{a}{{a'}} = \frac{b}{{b'}} = \frac{c}{{c'}}\] thì:
Cho điểm M(1;2;0) và mặt phẳng \[\left( P \right):x - 3y + z = 0\]. Khoảng cách từ M đến (P) là:
Cho hai mặt phẳng \[\left( P \right):ax + by + cz + d = 0;\left( Q \right) = a'x + b'y + c'z + d' = 0\]. Điều kiện để hai mặt phẳng song song là:
Cho mặt phẳng \[\left( P \right):ax + by + cz + d = 0\]. Khoảng cách từ điểm \[M\left( {{x_0};{y_0};{z_0}} \right)\;\] đến mặt phẳng (P) là:
Cho mặt phẳng \[\left( P \right):x - y + z = 1,\left( Q \right):x + z + y - 2 = 0\]và điểm M(0;1;1). Chọn kết luận đúng:
Cho hai mặt phẳng \[\left( P \right):ax + by + cz + d = 0;\] \[\left( Q \right):a\prime x + b\prime y + c\prime z + d\prime = 0\]. Công thức tính cô sin của góc giữa hai mặt phẳng là:
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \[\left( P \right):x - 2y - z + 2 = 0,\left( Q \right):2x - y + z + 1 = 0\]. Góc giữa (P) và (Q) là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):2x - y + z - 1 = 0\;\]. Điểm nào dưới đây thuộc (P)
Trong không gian Oxyz, điểm O(0;0;0) thuộc mặt phẳng nào sau đây?