Chủ nhật, 22/12/2024
IMG-LOGO

Câu hỏi:

11/07/2024 89

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \[3x - y - 3 = 0\]. Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] và phép tịnh tiến theo vectơ \[\overrightarrow v \left( {1;3} \right)\] biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’.

A. \[3x - y + 3 = 0\]

B. \[3x + y + 3 = 0\]

C. \[3x + y - 3 = 0\]

D. \[3x - y - 3 = 0\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp

Sử dụng biểu thức tọa độ của phép vị tự tâm \[I\left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\]

Sử dụng biểu thức tọa độ của phép tịnh tiến theo véctơ \[\overrightarrow v = \left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\].

Cách giải

Gọi \[M\left( {x;y} \right) \in d:3x - y - 3 = 0\]

Gọi \[M'\left( {x';y'} \right)\] là ảnh của \[M\left( {x;y} \right)\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\].

Khi đó ta có \[\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\] nên \[M\left( { - x' + 4; - y' + 6} \right)\]

\[M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\] nên ta có \[\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) = 0 \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0 \Leftrightarrow 3x' - y' - 3 = 0\end{array}\]

Do đó, ảnh của đường thẳng \[d:3x - y - 3 = 0\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] là đường thẳng \[d':3x - y - 3 = 0\] .

Ta tìm ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\].

Gọi \[N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\]\[N'\left( {{x_2};{y_2}} \right)\] là ảnh của qua \[{T_{\overrightarrow v }}\].

Khi đó ta có: \[\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\].

Thay tọa độ \[N\left( {{x_2} - 1;{y_2} - 3} \right)\] vào phương trình đường thẳng \[d':3x - y - 3 = 0\] ta được: \[3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0 \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\]

Vậy ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\] là đường thẳng \[{d_1}:3x - y - 3 = 0\].

Hay đường thẳng cần tìm là: \[{d_1}:3x - y - 3 = 0\].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right)\].

b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].

Xem đáp án » 24/06/2023 130

Câu 2:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 24/06/2023 126

Câu 3:

Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 24/06/2023 120

Câu 4:

Cho các hình vẽ sau:

Media VietJack

Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?

Xem đáp án » 24/06/2023 116

Câu 5:

Tìm hệ số của \[{x^3}\] trong khai triển của biểu thức \({\left( {1 - 2x} \right)^8}\)

Xem đáp án » 24/06/2023 114

Câu 6:

Trong các hàm số sau, hàm số nào nghịch biến trên khoảng \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\]?

Xem đáp án » 24/06/2023 110

Câu 7:

Đề kiểm tra một tiết môn toán của lớp 12A có 25 câu trắc nghiệm, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án đúng. Một học sinh không học bài nên làm bằng cách chọn ngẫu nhiên mỗi câu một phương án. Tính xác suất để học sinh đó làm đúng đáp án 15 câu.

Xem đáp án » 24/06/2023 109

Câu 8:

b) (VDC) Tìm tất cả các giá trị thực của tham số m để phương trình sau có nghiệm: \[{\cos ^2}x + \sqrt {\cos x + m} = m\].

Xem đáp án » 24/06/2023 106

Câu 9:

Trong các phương trình sau, phương trình nào có nghiệm?

Xem đáp án » 24/06/2023 103

Câu 10:

Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn có bốn chữ số mà các chữ số đôi một khác nhau.

Xem đáp án » 24/06/2023 102

Câu 11:

Có bao nhiêu số có hai chữ số mà tất cả các chữ số đều là số lẻ?

Xem đáp án » 24/06/2023 101

Câu 12:

Tính giá trị của tổng \[T = C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2018}\].

Xem đáp án » 24/06/2023 100

Câu 13:

Khai triển đa thức \[P\left( x \right) = {\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{10}} = {a_0} + {a_1}x + ... + {a_9}{x^9} + {a_{10}}{x^{10}}\]. Tìm hệ số \[{a_k}\left( {0 \le k \le 10;k \in \mathbb{N}} \right)\] lớn nhất trong khai triển trên.

Xem đáp án » 24/06/2023 100

Câu 14:

Có bao nhiêu số tự nhiên có sáu chữ số sao cho trong mỗi số đó chữ số sau lớn hơn chữ số trước?

Xem đáp án » 24/06/2023 99

Câu 15:

Tìm chu kì tuần hoàn của hàm số \[y = \sin x\].

Xem đáp án » 24/06/2023 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »