Đáp án A
Phương pháp
Đưa phương trình về dạng cơ bản: \[\cos f\left( x \right) = \cos g\left( x \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = g\left( x \right) + k2\pi \\f\left( x \right) = - g\left( x \right) + k2\pi \end{array} \right.\].
Cách giải
Ta có: \[\sin x = \cos 2x \Leftrightarrow \cos \left( {\frac{\pi }{2} - x} \right) = \cos 2x \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{2} - x + k2\pi \\2x = x - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\\x = - \frac{\pi }{2} + k2\pi \end{array} \right.\].
Vì \[x \in \left( { - \pi ;\pi } \right)\] nên \[x \in \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6}; - \frac{\pi }{2}} \right\}\].
Vậy có 3 nghiệm thỏa mãn đề bài.
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?