- Ở đoạn (2): “Người ngồi đấy, đầu đã điểm hoa râm, râu đã ngả màu. Những đường nhăn nheo của một bộ mặt tư lự, bây giờ đã biến mất hẳn. Ở đấy, giờ chỉ còn là mặt nước ao xuân, bằng lặng, kín đáo và êm nhẹ”, là những chi tiết miêu tả viên quản ngục. Loại đáp án A, B.
- Ở đoạn (3): “… viên quan cai ngục này là một thanh âm trong trẻo chen vào giữa một bản đàn mà nhạc luật đều hỗn loạn xô bồ.”. Loại đáp án C.
- Đáp án D chính mà mô tả về thầy thơ lại trong đoạn (5): “Một kẻ biết kính mến khí phách, một kẻ biết tiếc, biết trọng người có tài, hẳn không phải là kẻ xấu hay là vô tình…”. Chọn D.
Trong không gian tọa độ \({\rm{Oxyz,}}\) cho hai điểm \({\rm{A}}\left( {2\,;\,\,2\,;\,\,1} \right),\,\,{\rm{B}}\left( { - \frac{8}{3}\,;\,\,\frac{4}{3}\,;\,\,\frac{8}{3}} \right)\). Biết \({\rm{I}}\left( {{\rm{a}}\,;\,\,{\rm{b}}\,;\,\,{\rm{c}}} \right)\) là tâm đường tròn nội tiếp của tam giác \({\rm{OAB}}\). Tính \({\rm{S}} = {\rm{a}} + {\rm{b}} + {\rm{c}}\).
Một vật chuyển động theo quy luật \(s = \frac{1}{3}{t^3} - {t^2} + 9t,\) với \(t\) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \[s\] là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Có bao nhiêu giá trị nguyên của \[m \in \left( { - 10\,;\,\,10} \right)\] để hàm số \({{\rm{y}}^2}\; = {{\rm{m}}^2}{{\rm{x}}^4} - 2\left( {4\;{\rm{m}} - 1} \right){{\rm{x}}^2} + 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\]?
Cho tứ diện đều \({\rm{ABCD}}\) cạnh \[a.\] Mặt phẳng \(\left( {\rm{P}} \right)\) chứa cạnh \(BC\) cắt cạnh \(AD\) tại \({\rm{E}}{\rm{.}}\) Biết góc giữa hai mặt phẳng \(\left( {\rm{P}} \right)\) và \(\left( {{\rm{BCD}}} \right)\) có số đo là \(\alpha \) thỏa mãn \(\tan \alpha = \frac{{5\sqrt 2 }}{7}.\) Gọi thể tích của hai tứ diện \({\rm{ABCE}}\) và tứ diện \({\rm{BCDE}}\) lần lượt là \({{\rm{V}}_1}\) và \({{\rm{V}}_2}\). Tính tỉ số \(\frac{{{{\rm{V}}_1}}}{{\;{{\rm{V}}_2}}}\).
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ \(t\) là \(f(t) = 4{t^3} - \frac{{{t^4}}}{2}\) (người). Nếu xem \(f'(t)\) là tốc độ truyền bệnh (người/ ngày) tại thời điểm \(t\) với \(t \in \left[ {0\,;\,\,6} \right]\). Hỏi vào ngày thứ mấy tốc độ truyền bệnh lớn nhất sẽ lớn nhất?
Cho hai số phức \({z_1} = 1 + i\) và \({z_2} = 2 + i\). Trên mặt phẳng \[Oxy,\] điểm biểu diễn số phức \({{\rm{z}}_1} + 2{{\rm{z}}_2}\) có tọa độ là
Trong hệ tọa độ \({\rm{Oxy}}\), cho hai điểm \({\rm{A}}\left( {2\,;\,\, - 3} \right),\,\,{\rm{B}}\left( {3\,;\,\,4} \right)\). Tọa độ điểm \(M\) trên trục hoành sao cho \[A,\,\,B,\,\,M\] thẳng hàng là
Cho hàm số \({\rm{f}}\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hàm số \({\rm{y}} = {\rm{f}}\left( {{{\rm{x}}^2} + 4{\rm{x}}} \right) - {{\rm{x}}^2} - 4{\rm{x}}\) có bao nhiêu điểm cực trị thuộc khoảng \(\left( { - 5\,;\,\,1} \right)\)?
Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích lớn nhất bằng bao nhiêu?
Cho hàm số \({\rm{f}}\left( x \right)\), hàm số \({\rm{y}} = {\rm{f'}}\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Bất phương trình \({\rm{f}}({\rm{x}}) > 2{\rm{x}} + {\rm{m}}\) \({\rm{(m}}\) là tham số thực) nghiệm đúng với mọi \(x \in \left( {0\,;\,\,2} \right)\) khi và chỉ khi
Cho số phức \(z\) thỏa mãn iz \( = 1 + 3i\). Môđun của \(z\) bằng
Xét các số phức z thỏa mãn \(\left( {\bar z + 2{\rm{i}}} \right)\left( {{\rm{z}} - 2} \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có tâm là điểm nào dưới đây?