Đọc đoạn trích sau đây và trả lời câu hỏi:
Thế mà hơn 80 năm nay, bọn thực dân Pháp lợi dụng lá cờ tự do, bình đẳng, bác ái, đến cướp đất nước ta, áp bức đồng bào ta. Hành động của chúng trái hẳn với nhân đạo và chính nghĩa.
Về chính trị, chúng tuyệt đối không cho nhân dân ta một chút tự do dân chủ nào.
Chúng thi hành những luật pháp dã man. Chúng lập ba chế độ khác nhau ở Trung, Nam, Bắc để ngăn cản việc thống nhất nước nhà của ta, để ngăn cản dân tộc ta đoàn kết.
Chúng lập ra nhà tù nhiều hơn trường học. Chúng thẳng tay chém giết những người yêu nước thương nòi của ta. Chúng tắm các cuộc khởi nghĩa của ta trong những bể máu.
Chúng ràng buộc dư luận, thi hành những chính sách ngu dân.
Chúng dùng thuốc phiện, rượu cồn để làm cho nòi giống ta suy nhược.
Về kinh tế, chúng bóc lột dân ta đến xương tủy, khiến cho dân ta nghèo nàn, thiếu thốn, nước ta xơ xác, tiêu điều. Chúng cướp không ruộng đất, hầm mỏ, nguyên liệu.
Chúng giữ độc quyền in giấy bạc, xuất cảng và nhập cảng.
Chúng đặt ra hàng trăm thứ thuế vô lí, làm cho dân ta, nhất là dân cày và dân buôn, trở nên bần cùng.
Chúng không cho các nhà tư sản ta ngóc đầu lên. Chúng bóc lột công nhân dân ta một cách vô cùng tàn nhẫn.
(Tuyên ngôn độc lập – Hồ Chí Minh)
Thao tác lập luận chính trong đoạn trích trên là gì?
Trong đoạn trích, Chủ tịch Hồ Chí Minh đã dùng thao tác lập luận chứng minh bằng cách đưa ra những dẫn chứng về tội ác của giặc Pháp về chính trị, về kinh tế để kết tội chúng. Chọn C.
Trong không gian tọa độ \({\rm{Oxyz,}}\) cho hai điểm \({\rm{A}}\left( {2\,;\,\,2\,;\,\,1} \right),\,\,{\rm{B}}\left( { - \frac{8}{3}\,;\,\,\frac{4}{3}\,;\,\,\frac{8}{3}} \right)\). Biết \({\rm{I}}\left( {{\rm{a}}\,;\,\,{\rm{b}}\,;\,\,{\rm{c}}} \right)\) là tâm đường tròn nội tiếp của tam giác \({\rm{OAB}}\). Tính \({\rm{S}} = {\rm{a}} + {\rm{b}} + {\rm{c}}\).
Một vật chuyển động theo quy luật \(s = \frac{1}{3}{t^3} - {t^2} + 9t,\) với \(t\) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \[s\] là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Có bao nhiêu giá trị nguyên của \[m \in \left( { - 10\,;\,\,10} \right)\] để hàm số \({{\rm{y}}^2}\; = {{\rm{m}}^2}{{\rm{x}}^4} - 2\left( {4\;{\rm{m}} - 1} \right){{\rm{x}}^2} + 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\]?
Cho tứ diện đều \({\rm{ABCD}}\) cạnh \[a.\] Mặt phẳng \(\left( {\rm{P}} \right)\) chứa cạnh \(BC\) cắt cạnh \(AD\) tại \({\rm{E}}{\rm{.}}\) Biết góc giữa hai mặt phẳng \(\left( {\rm{P}} \right)\) và \(\left( {{\rm{BCD}}} \right)\) có số đo là \(\alpha \) thỏa mãn \(\tan \alpha = \frac{{5\sqrt 2 }}{7}.\) Gọi thể tích của hai tứ diện \({\rm{ABCE}}\) và tứ diện \({\rm{BCDE}}\) lần lượt là \({{\rm{V}}_1}\) và \({{\rm{V}}_2}\). Tính tỉ số \(\frac{{{{\rm{V}}_1}}}{{\;{{\rm{V}}_2}}}\).
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ \(t\) là \(f(t) = 4{t^3} - \frac{{{t^4}}}{2}\) (người). Nếu xem \(f'(t)\) là tốc độ truyền bệnh (người/ ngày) tại thời điểm \(t\) với \(t \in \left[ {0\,;\,\,6} \right]\). Hỏi vào ngày thứ mấy tốc độ truyền bệnh lớn nhất sẽ lớn nhất?
Cho hai số phức \({z_1} = 1 + i\) và \({z_2} = 2 + i\). Trên mặt phẳng \[Oxy,\] điểm biểu diễn số phức \({{\rm{z}}_1} + 2{{\rm{z}}_2}\) có tọa độ là
Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích lớn nhất bằng bao nhiêu?
Xét các số phức z thỏa mãn \(\left( {\bar z + 2{\rm{i}}} \right)\left( {{\rm{z}} - 2} \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có tâm là điểm nào dưới đây?
Trong hệ tọa độ \({\rm{Oxy}}\), cho hai điểm \({\rm{A}}\left( {2\,;\,\, - 3} \right),\,\,{\rm{B}}\left( {3\,;\,\,4} \right)\). Tọa độ điểm \(M\) trên trục hoành sao cho \[A,\,\,B,\,\,M\] thẳng hàng là
Cho hàm số \({\rm{f}}\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hàm số \({\rm{y}} = {\rm{f}}\left( {{{\rm{x}}^2} + 4{\rm{x}}} \right) - {{\rm{x}}^2} - 4{\rm{x}}\) có bao nhiêu điểm cực trị thuộc khoảng \(\left( { - 5\,;\,\,1} \right)\)?
Phương trình \(\sin 2x + 3\cos x = 0\) có bao nhiêu nghiệm trong khoảng \(\left( {0\,;\,\,\pi } \right)\)?
Cho hàm số \({\rm{f}}\left( x \right)\), hàm số \({\rm{y}} = {\rm{f'}}\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Bất phương trình \({\rm{f}}({\rm{x}}) > 2{\rm{x}} + {\rm{m}}\) \({\rm{(m}}\) là tham số thực) nghiệm đúng với mọi \(x \in \left( {0\,;\,\,2} \right)\) khi và chỉ khi