Đọc đoạn trích sau đây và trả lời câu hỏi:
Cái đẹp của Nghệ - Tĩnh là ở nơi núi non hùng vĩ, ở nơi sông sâu, nước trong, với những cảnh vật bao la. Một dãy núi âm thầm giăng dài như một bức bình phong phía sau đất nước. Phía trước mặt, biển Đông lai láng, mênh mông. Ngoài khơi, hòn đảo Song Ngư sừng sững đứng như một toà cột đá trụ trời. Mấy con sông Lam Giang, Phố Giang, La Giang cuồn cuộn từ đại ngàn chảy xuống, tưới giội cho những cánh đồng mà cánh tay của người dân cày đã cướp đoạt với thiên nhiên, từng mảnh, từng mảnh một, mấy ngàn năm nay.
(Cảnh thiên nhiên xứ Nghệ, theo Ngữ văn 10, tập hai, NXB Giáo dục Việt Nam, năm 2010)
Biện pháp tu từ nào được sử dụng trong câu văn in đậm?
So sánh: “hòn đảo Song Ngư” – “tòa cột đá trụ trời”. Chọn B.
Trong không gian tọa độ \({\rm{Oxyz,}}\) cho hai điểm \({\rm{A}}\left( {2\,;\,\,2\,;\,\,1} \right),\,\,{\rm{B}}\left( { - \frac{8}{3}\,;\,\,\frac{4}{3}\,;\,\,\frac{8}{3}} \right)\). Biết \({\rm{I}}\left( {{\rm{a}}\,;\,\,{\rm{b}}\,;\,\,{\rm{c}}} \right)\) là tâm đường tròn nội tiếp của tam giác \({\rm{OAB}}\). Tính \({\rm{S}} = {\rm{a}} + {\rm{b}} + {\rm{c}}\).
Cho hàm số \({\rm{f}}({\rm{x}})\) liên tục trên đoạn \[\left[ {0\,;\,\,10} \right]\] và \[\int\limits_0^{10} {f\left( x \right)dx} = 7\] và \[\int\limits_2^6 {f\left( x \right)dx} = 3.\] Tính \(P = \int\limits_0^2 f \left( x \right)dx + \int\limits_6^{10} f \left( x \right)dx.\)
Một vật chuyển động theo quy luật \(s = \frac{1}{3}{t^3} - {t^2} + 9t,\) với \(t\) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \[s\] là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Có bao nhiêu giá trị nguyên của \[m \in \left( { - 10\,;\,\,10} \right)\] để hàm số \({{\rm{y}}^2}\; = {{\rm{m}}^2}{{\rm{x}}^4} - 2\left( {4\;{\rm{m}} - 1} \right){{\rm{x}}^2} + 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\]?
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Lara và Roger Griffiths đã thành công dực dỡ khi họ trúng xổ số trị giá 1,83 triệu bảng vào năm 2005. Người chồng Roger làm quản lý công nghệ thông tin còn vợ Lara là giáo viên nghệ thuật biểu diễn tại trường cao đẳng địa phương. Mặc dù cả hai đều được giáo dục tốt, họ đều không biết cách quản lý số tiền lớn. Họ sống cuộc sống thượng lưu, tận hưởng chuyến đi nghỉ dưỡng ở Dubai (UAE), Monaco và Rome (Italy).
Cho tứ diện đều \({\rm{ABCD}}\) cạnh \[a.\] Mặt phẳng \(\left( {\rm{P}} \right)\) chứa cạnh \(BC\) cắt cạnh \(AD\) tại \({\rm{E}}{\rm{.}}\) Biết góc giữa hai mặt phẳng \(\left( {\rm{P}} \right)\) và \(\left( {{\rm{BCD}}} \right)\) có số đo là \(\alpha \) thỏa mãn \(\tan \alpha = \frac{{5\sqrt 2 }}{7}.\) Gọi thể tích của hai tứ diện \({\rm{ABCE}}\) và tứ diện \({\rm{BCDE}}\) lần lượt là \({{\rm{V}}_1}\) và \({{\rm{V}}_2}\). Tính tỉ số \(\frac{{{{\rm{V}}_1}}}{{\;{{\rm{V}}_2}}}\).
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Hiện đại hóa văn học là quá trình làm cho văn học Việt Nam thoát ra khỏi hệ thống bút pháp của văn học trung đại và đổi mới theo hình thức văn học phương Tây, có thể hội nhập với nền văn học hiện đại thế giới.
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trong dòng đời vội vã có nhiều người dường như đã quên đi trái tim giữa người với người. Nhưng đã là cuộc đời thì đâu phải chỉ trải đầy hoa hồng, đâu phải ai sinh ra cũng có được cuộc sống giàu sang, có được gia đình hạnh phúc toàn diện mà còn đó nhiều mảnh đời đau thương, bất hạnh cần chúng ta sẻ chia, giúp đỡ. Chúng ta đâu chỉ sống riêng cho mình, mà còn phải biết quan tâm tới những người khác.
Cho hình phẳng \({\rm{D}}\) giới hạn bởi đường cong \({\rm{y}} = \sqrt {2 + \sin x} ,\) trục hoành và các đường thẳng \(x = 0,\,\,x = \pi \). Khối tròn xoay tạo thành khi quay \({\rm{D}}\) quay quanh trục hoành có thể tích \(V\) bằng bao nhiêu?
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ \(t\) là \(f(t) = 4{t^3} - \frac{{{t^4}}}{2}\) (người). Nếu xem \(f'(t)\) là tốc độ truyền bệnh (người/ ngày) tại thời điểm \(t\) với \(t \in \left[ {0\,;\,\,6} \right]\). Hỏi vào ngày thứ mấy tốc độ truyền bệnh lớn nhất sẽ lớn nhất?
Đọc đoạn trích sau đây và trả lời câu hỏi:
(1) Nhưng em ơi, đời anh là một trái tim
(2) Nào ai biết chiều sâu và bến bờ của nó.
(3) Em là nữ hoàng của vương quốc đó
(4) Ấy thế mà em có biết gì về biên giới của nó đâu.
(R. Ta-go, Bài thơ số 28 trích tập Người làm vườn)
Xác định nội dung chính trong đoạn trích trên.