Đọc đoạn trích sau đây và trả lời câu hỏi:
Cái đẹp của Nghệ - Tĩnh là ở nơi núi non hùng vĩ, ở nơi sông sâu, nước trong, với những cảnh vật bao la. Một dãy núi âm thầm giăng dài như một bức bình phong phía sau đất nước. Phía trước mặt, biển Đông lai láng, mênh mông. Ngoài khơi, hòn đảo Song Ngư sừng sững đứng như một toà cột đá trụ trời. Mấy con sông Lam Giang, Phố Giang, La Giang cuồn cuộn từ đại ngàn chảy xuống, tưới giội cho những cánh đồng mà cánh tay của người dân cày đã cướp đoạt với thiên nhiên, từng mảnh, từng mảnh một, mấy ngàn năm nay.
(Cảnh thiên nhiên xứ Nghệ, theo Ngữ văn 10, tập hai, NXB Giáo dục Việt Nam, năm 2010)
Biện pháp tu từ nào được sử dụng trong câu văn in đậm?
So sánh: “hòn đảo Song Ngư” – “tòa cột đá trụ trời”. Chọn B.
Trong không gian tọa độ \({\rm{Oxyz,}}\) cho hai điểm \({\rm{A}}\left( {2\,;\,\,2\,;\,\,1} \right),\,\,{\rm{B}}\left( { - \frac{8}{3}\,;\,\,\frac{4}{3}\,;\,\,\frac{8}{3}} \right)\). Biết \({\rm{I}}\left( {{\rm{a}}\,;\,\,{\rm{b}}\,;\,\,{\rm{c}}} \right)\) là tâm đường tròn nội tiếp của tam giác \({\rm{OAB}}\). Tính \({\rm{S}} = {\rm{a}} + {\rm{b}} + {\rm{c}}\).
Một vật chuyển động theo quy luật \(s = \frac{1}{3}{t^3} - {t^2} + 9t,\) với \(t\) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \[s\] là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Có bao nhiêu giá trị nguyên của \[m \in \left( { - 10\,;\,\,10} \right)\] để hàm số \({{\rm{y}}^2}\; = {{\rm{m}}^2}{{\rm{x}}^4} - 2\left( {4\;{\rm{m}} - 1} \right){{\rm{x}}^2} + 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\]?
Cho tứ diện đều \({\rm{ABCD}}\) cạnh \[a.\] Mặt phẳng \(\left( {\rm{P}} \right)\) chứa cạnh \(BC\) cắt cạnh \(AD\) tại \({\rm{E}}{\rm{.}}\) Biết góc giữa hai mặt phẳng \(\left( {\rm{P}} \right)\) và \(\left( {{\rm{BCD}}} \right)\) có số đo là \(\alpha \) thỏa mãn \(\tan \alpha = \frac{{5\sqrt 2 }}{7}.\) Gọi thể tích của hai tứ diện \({\rm{ABCE}}\) và tứ diện \({\rm{BCDE}}\) lần lượt là \({{\rm{V}}_1}\) và \({{\rm{V}}_2}\). Tính tỉ số \(\frac{{{{\rm{V}}_1}}}{{\;{{\rm{V}}_2}}}\).
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ \(t\) là \(f(t) = 4{t^3} - \frac{{{t^4}}}{2}\) (người). Nếu xem \(f'(t)\) là tốc độ truyền bệnh (người/ ngày) tại thời điểm \(t\) với \(t \in \left[ {0\,;\,\,6} \right]\). Hỏi vào ngày thứ mấy tốc độ truyền bệnh lớn nhất sẽ lớn nhất?
Cho hai số phức \({z_1} = 1 + i\) và \({z_2} = 2 + i\). Trên mặt phẳng \[Oxy,\] điểm biểu diễn số phức \({{\rm{z}}_1} + 2{{\rm{z}}_2}\) có tọa độ là
Trong hệ tọa độ \({\rm{Oxy}}\), cho hai điểm \({\rm{A}}\left( {2\,;\,\, - 3} \right),\,\,{\rm{B}}\left( {3\,;\,\,4} \right)\). Tọa độ điểm \(M\) trên trục hoành sao cho \[A,\,\,B,\,\,M\] thẳng hàng là
Cho hàm số \({\rm{f}}\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hàm số \({\rm{y}} = {\rm{f}}\left( {{{\rm{x}}^2} + 4{\rm{x}}} \right) - {{\rm{x}}^2} - 4{\rm{x}}\) có bao nhiêu điểm cực trị thuộc khoảng \(\left( { - 5\,;\,\,1} \right)\)?
Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích lớn nhất bằng bao nhiêu?
Phương trình \(\sin 2x + 3\cos x = 0\) có bao nhiêu nghiệm trong khoảng \(\left( {0\,;\,\,\pi } \right)\)?
Cho hàm số \({\rm{f}}\left( x \right)\), hàm số \({\rm{y}} = {\rm{f'}}\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Bất phương trình \({\rm{f}}({\rm{x}}) > 2{\rm{x}} + {\rm{m}}\) \({\rm{(m}}\) là tham số thực) nghiệm đúng với mọi \(x \in \left( {0\,;\,\,2} \right)\) khi và chỉ khi
Cho số phức \(z\) thỏa mãn iz \( = 1 + 3i\). Môđun của \(z\) bằng