Một lọ đựng dung dịch \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) (dung dịch X) để lâu ngày. Nồng độ \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) trong X được xác định lại như sau:
Thí nghiệm 1: thêm \(10{\rm{ml}}\) dung dịch Y gồm \({\rm{BaC}}{{\rm{l}}_2}0,6{\rm{M}}\) và \({\rm{HCl}}\,\,3,0{\rm{M}}\) vào \(5{\rm{ml}}\) dung dịch X thu được 0,2796 gam kết tủa trắng.
Thí nghiệm 2: thêm từ từ dung dịch nước bromine vào \(5{\rm{ml}}\) dung dịch X cho tới khi dung dịch có màu vàng nhạt bền, thêm tiếp \(10{\rm{ml}}\) dung dịch Y thì thu được 0,8388 gam kết tủa trắng.
Nồng độ \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) trong dung dịch X là
A. \(0,30{\rm{M}}.\)
Dung dịch \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) để lâu ngày sẽ bị oxi hóa một phần thành\({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} \Rightarrow \) trong lọ chứa \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) và \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}\).
Thí nghiệm 1:
\(2{\rm{HCl}} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3} \to 2{\rm{NaCl}} + {{\rm{H}}_2}{\rm{O}} + {\rm{S}}{{\rm{O}}_2}\)
\({\rm{BaC}}{{\rm{l}}_2} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} \to {\rm{BaS}}{{\rm{O}}_4} \downarrow + \,2{\rm{NaCl}}\)
\( \to {{\rm{n}}_{{\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}({\rm{TN1}})}} = {{\rm{n}}_{{\rm{BaS}}{{\rm{O}}_4}}} = \frac{{0,233}}{{233}} = 0,001\;{\rm{mol}}.\)
Thí nghiệm 2:
\({\rm{B}}{{\rm{r}}_2} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} \to {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} + 2{\rm{HBr}}\)
\({\rm{BaC}}{{\rm{l}}_2} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} \to {\rm{BaS}}{{\rm{O}}_4} \downarrow + \,2{\rm{NaCl}}\)
\({{\rm{n}}_{{\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}({\rm{TN}}2)}} = {{\rm{n}}_{{\rm{BaS}}{{\rm{O}}_4}}} = \frac{{0,699}}{{233}} = 0,003\;{\rm{mol}}\)
Nồng độ \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) trong dung dịch X là \( = \frac{{0,003 - 0,001}}{{0,005}} = 0,4{\rm{M}}\). Chọn B.
Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác đều, \(SA \bot \left( {ABC} \right).\) Mặt phẳng \(\left( {SBC} \right)\) cách \(A\) một khoảng bằng \(a\) và hợp với mặt phẳng \(\left( {ABC} \right)\) góc \(30^\circ .\) Thể tích của khối chóp \[S.ABC\] bằng
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Ông A dự định sử dụng hết 6,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu mét khối (kết quả làm tròn đến hàng phần trăm)?
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Trong không gian \[Oxyz,\] tọa độ điểm đối xứng của điểm \(M\left( {1\,;\,\,2\,;\,\,3} \right)\) qua mặt phẳng \(\left( {Oxz} \right)\) là
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Tố Hữu từng quan niệm “Thơ là chuyện ______. [...] Thơ là tiếng nói đồng ý và đồng tình, tiếng nói đồng chí.”
Cho cân bằng sau trong bình kín:
Biết khi hạ nhiệt độ của bình thì màu nâu đỏ nhạt dần. Phản ứng thuận có
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Cuộc tấn công vào Quảng trường Tự do – quảng trường lớn nhất của Ukraine _______ là trung tâm đời sống công cộng của thành phố, ________ nhiều người Ukraine coi là bằng chứng rằng cuộc tấn công của Nga không chỉ nhằm vào các mục tiêu quân sự mà còn phá vỡ tinh thần của họ.
Trong không gian \[Oxyz,\] cho bốn điểm \(A\left( {1\,;\,\,1\,;\,\,0} \right),\,\,B\left( {3\,;\,\,1\,;\,\, - 2} \right)\), \[C\left( {0\,;\,\,2\,;\,\,0} \right)\] và \(D\left( { - 1\,;\,\,3\,;\,\,2} \right).\) Có bao nhiêu mặt phẳng chứa hai điểm \[B,\,\,C\] và cách đều hai điểm \[A,\,\,D?\]