Hệ phương trình nhận cặp số nào sau đây là nghiệm?
A. .
B. .
C. .
D. .
Đáp án đúng là: B
Cách 1. ⦁ Thay và vào hệ phương trình đã cho, ta được: .
Do đó cặp số không là nghiệm của hệ phương trình .
⦁ Tương tự, ta thay lần lượt các cặp số ở phương án B, C, D vào hệ phương trình đã cho thì thấy rằng chỉ có cặp số là nghiệm của hệ phương trình đó.
Vậy ta chọn phương án B.
Cách 2. Bấm máy tính.
Hệ phương trình
Sử dụng máy tính cầm tay, ta lần lượt bấm các phím theo thứ tự:
Trên màn hình hiện ra kết quả ấn thêm phím ta thấy màn hình hiện kết quả .
Vậy hệ phương trình đã cho có nghiệm là
Cách 3. Giải hệ phương trình
Từ phương trình (1) ta có .
Thế vào phương trình (2) ta được phương trình hay
Thay vào phương trình , ta được .
Như vậy, hệ phương trình đã cho có nghiệm là
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 2\\2x - 5y = 11\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Khi đó tổng của \(x\) và \(y\) bằng
Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {y + 1} \right) = xy - 2\\\left( {x + 2} \right)\left( {y - 1} \right) = xy + 6\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng bình phương của \(x\) và \(y\) là
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp thế (biểu diễn theo , ta được hệ thức biểu diễn theo là
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho là nghiệm của hệ phương trình và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là và
(ii) Hệ phương trình có nghiệm là .
(iii) Tổng bình phương của và lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là