Cho \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}\frac{3}{x} + \frac{2}{y} = 7\\\frac{2}{x} - \frac{5}{y} = - 27\end{array} \right.\] và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là \(x \ne 0\) và \(y \ne 0.\)
(ii) Hệ phương trình có nghiệm là \(\left( { - 1;\,\,5} \right)\).
(iii) Tổng bình phương của \(x\) và \(y\) lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
A. 0.
B. 1.
C. 2.
D. 3.
Đáp án đúng là: B
Hệ phương trình cho điều kiện xác định là \(x \ne 0\) và \(y \ne 0.\)
Nhân hai vế của phương trình thứ nhất của hệ với 2 và nhân hai vế của phương trình thứ hai của hệ với 3, ta được hệ mới: \[\left\{ \begin{array}{l}\frac{6}{x} + \frac{4}{y} = 14\\\frac{6}{x} - \frac{{15}}{y} = - 81\end{array} \right.\]
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ mới, ta được:
\(\frac{{19}}{y} = 95,\) suy ra \(\frac{1}{y} = 5\) nên \(y = \frac{1}{5}\) (thỏa mãn).
Thay \(\frac{1}{y} = 5\) vào phương trình \[\frac{3}{x} + \frac{2}{y} = 7\], ta được:
\[\frac{3}{x} + 2 \cdot 5 = 7\] suy ra \[\frac{3}{x} = - 3\] nên \(x = - 1\) (thỏa mãn).
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 1;\,\,\frac{1}{5}} \right)\).
Tổng bình phương của \(x\) và \(y\) là: \({\left( { - 1} \right)^2} + {\left( {\frac{1}{5}} \right)^2} = \frac{{26}}{{25}} < 20\).
Vậy chỉ có 1 khẳng định đúng là (i). Ta chọn phương án B.
</>
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp thế (biểu diễn
theo
, ta được hệ thức biểu diễn
theo
là
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là
Có bao nhiêu giá trị nguyên của để hệ phương trình
có nghiệm duy nhất
sao cho
nhận giá trị nguyên?
Biết hệ phương trình nhận cặp số
là một nghiệm. Khi đó, giá trị của
là
Với giá trị nào của \[a,{\rm{ }}b\] để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {1;\,\,13} \right)\) và \(B\left( { - 5;\,\,1} \right)?\)
Cho là nghiệm của hệ phương trình
và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là và
(ii) Hệ phương trình có nghiệm là .
(iii) Tổng bình phương của và
lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho hệ phương trình \[\left\{ \begin{array}{l}3x + y = 19\\x - 2y = 4\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Bình phương hiệu hai số \(x\) và \(y\) bằng
Với giá trị nào của tham số thì hệ phương trình
có nghiệm duy nhất