IMG-LOGO

Câu hỏi:

28/10/2024 6

Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)

A. \(m = 1\).

B. \(m = 2\).

Đáp án chính xác

C. \(m = 3\).

D. \(m = 4\).

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cách 1. ⦁ Thay \(m = 1\) vào hệ phương trình đã cho, ta được hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\3x + 2y = 7\end{array} \right.\]

Sử dụng máy tính cầm tay, ta lần lượt bấm các phím theo thứ tự:

 MODE   5    1    2  =    1    =  3  =  3  =  2  =  7  =  =

Trên màn hình hiện ra kết quả \(x = - 1,\) ấn thêm phím = ta thấy màn hình hiện kết quả \(y = 5.\)

Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 1;\,\,5} \right)\) và ta thấy \(x \ne y\). Do đó trường hợp \(m = 1\) không thỏa mãn yêu cầu đề bài.

⦁ Tương tự như trên, ta thay lần lượt các giá trị \(m\) vào hệ phương trình đã cho, sau đó sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình nhận được, thì thấy rằng chỉ có \(m = 2\) thỏa mãn yêu cầu đề bài.

Vậy \(m = 2.\)

Cách 2. Thay \[x = y\] vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}2y + y = 3\\\left( {2m + 1} \right)y + 2y = 7\end{array} \right.\] hay \[\left\{ \begin{array}{l}3y = 3\\\left( {2m + 3} \right)y = 7\,\,\,\,\,\,\,\,\left( 1 \right)\end{array} \right.\]

Với \[3y = 3,\] ta có: \[y = 1.\]

Thay \[y = 1\] vào phương trình (1), ta được:

\[\left( {2m + 3} \right) \cdot 1 = 7\]

\[2m + 3 = 7\]

\[2m = 4\]

\[m = 2.\]

Vậy \[m = 2\] thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án B.

Cách 3. Xét hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\left( {2m + 1} \right)x + 2y = 7\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ phương trình (1) ta có: \(y = 3 - 2x\).

Thế \(y = 3 - 2x\) vào phương trình (2), ta được:

\[\left( {2m + 1} \right)x + 2\left( {3 - 2x} \right) = 7\]

\(\left( {2m + 1} \right)x + 6 - 4x = 7\)

\(\left( {2m - 3} \right)x = 1\,\,\,\left( * \right)\)

Để hệ phương trình có nghiệm duy nhất thì phương trình \(\left( * \right)\) phải có nghiệm duy nhất, điều này xảy ra khi và chỉ khi \(2m - 3 \ne 0\) hay \[m \ne \frac{3}{2}\].

Khi đó giải phương trình \(\left( * \right)\) ta được: \[x = \frac{1}{{2m - 3}}\].

Thay \[x = \frac{1}{{2m - 3}}\] vào phương trình \(y = 3 - 2x\) ta được:

\[y = 3 - 2 \cdot \frac{1}{{2m - 3}} = \frac{{6m - 9}}{{2m - 3}} - \frac{2}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\].

Để hệ phương trình có nghiệm duy nhất \(x = y\) thì \[\frac{1}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\].

Giải phương trình chứa ẩn \(m\) ở mẫu:

\[\frac{1}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\]

\(1 = 6m - 11\)

\(6m = 12\)

\[m = 2\] (thỏa mãn \[m \ne \frac{3}{2})\]

Vậy \(m = 2\) thỏa mãn yêu cầu đề bài.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là

Xem đáp án » 28/10/2024 10

Câu 2:

Với giá trị nào của tham số thì hệ phương trình có nghiệm duy nhất

Xem đáp án » 28/10/2024 9

Câu 3:

Hệ phương trình nhận cặp số nào sau đây là nghiệm?

Xem đáp án » 28/10/2024 8

Câu 4:

Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 2\\2x - 5y = 11\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Khi đó tổng của \(x\) và \(y\) bằng

Xem đáp án » 28/10/2024 7

Câu 5:

Cho hệ phương trình có nghiệm là . Khi đó tổng của bằng

Xem đáp án » 28/10/2024 7

Câu 6:

II. Thông hiểu

Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là

Xem đáp án » 28/10/2024 6

Câu 7:

Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là

Xem đáp án » 28/10/2024 6

Câu 8:

Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là

Xem đáp án » 28/10/2024 6

Câu 9:

Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:

Xem đáp án » 28/10/2024 6

Câu 10:

Với giá trị nào của để đồ thị hàm số đi qua hai điểm

Xem đáp án » 28/10/2024 6

Câu 11:

Cho là nghiệm của hệ phương trình và cùng với các khẳng định sau:

(i) Hệ phương trình cho điều kiện xác định là

(ii) Hệ phương trình có nghiệm là .

(iii) Tổng bình phương của lớn hơn 20.

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án » 28/10/2024 6

Câu 12:

Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là

Xem đáp án » 28/10/2024 6

Câu 13:

Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là

Xem đáp án » 28/10/2024 6

Câu 14:

Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:

Xem đáp án » 28/10/2024 5

Câu 15:

Cho hệ phương trình \[\left\{ \begin{array}{l}3x + y = 19\\x - 2y = 4\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Bình phương hiệu hai số \(x\) và \(y\) bằng

Xem đáp án » 28/10/2024 5

Câu hỏi mới nhất

Xem thêm »
Xem thêm »