Với giá trị nào của để đồ thị hàm số đi qua hai điểm và
A. .
B. .
C. .
D. .
Đáp án đúng là: C
Vì đồ thị hàm số đi qua điểm nên ta có hay .
Vì đồ thị hàm số đi qua điểm nên ta có hay .
Khi đó, ta có hệ phương trình
Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
suy ra
Thay vào phương trình ta được: nên
Vậy và
III. Vận dụng
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 2\\2x - 5y = 11\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Khi đó tổng của \(x\) và \(y\) bằng
Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho là nghiệm của hệ phương trình và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là và
(ii) Hệ phương trình có nghiệm là .
(iii) Tổng bình phương của và lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho hệ phương trình \[\left\{ \begin{array}{l}3x + y = 19\\x - 2y = 4\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Bình phương hiệu hai số \(x\) và \(y\) bằng