Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
A. Cộng từng vế của phương trình (1) với phương trình (2).
B. Trừ từng vế của phương trình (1) cho phương trình (2).
C. Nhân hai vế phương trình (1) với 2 rồi trừ từng vế của phương trình mới cho phương trình (2).
D. Nhân hai vế phương trình (1) với 2 rồi cộng từng vế của phương trình mới với phương trình (2).
Đáp án đúng là: B
Từ hệ phương trình đã cho, cách đơn giản nhất để thu được phương trình bậc nhất một ẩn bằng phương pháp cộng đại số là trừ từng vế của phương trình (1) cho phương trình (2).
Khi đó ta thu được \[x + y - 2x - y = 5 - \left( { - 3} \right)\]
Tức là \[ - x = 8\], đây là phương trình bậc nhất một ẩn.
Vậy ta chọn phương án B.
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 2\\2x - 5y = 11\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Khi đó tổng của \(x\) và \(y\) bằng
Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là
Cho hệ phương trình Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho là nghiệm của hệ phương trình và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là và
(ii) Hệ phương trình có nghiệm là .
(iii) Tổng bình phương của và lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho hệ phương trình \[\left\{ \begin{array}{l}3x + y = 19\\x - 2y = 4\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Bình phương hiệu hai số \(x\) và \(y\) bằng
Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {y + 1} \right) = xy - 2\\\left( {x + 2} \right)\left( {y - 1} \right) = xy + 6\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng bình phương của \(x\) và \(y\) là